Questions

- boundedness
- ► completeness
- ordered fields

Variations of the notion of order

A weak order, usually written \leq , is a relation that is

• reflexive: $x \le x$ for every x

- antisymmetric: if $x \leq y$ and $y \leq x$, then x = y
- transitive: if $x \leq y$ and $y \leq z$, then $x \leq z$
- A strict order, usually written <, is a relation that is
 - ▶ irreflexive: there is no x for which x < x</p>
 - antisymmetric: if x < y, then it is not the case that y < x
 - transitive: if x < y and y < z, then x < z

In Definition 1.1.1 in the textbook, the order is assumed to be a strict order that additionally satisfies the trichotomy property: for every x and y, either x < y or y < x or x = y (exclusive "or").

Fields

Examples.

 $\ensuremath{\mathbb{R}}$, the real numbers.

- \mathbb{Q} , the rational numbers.
- $\mathbb{C},$ the complex numbers.

Integers modulo a prime number.

Non-examples.

 \mathbb{Z} , the integers. (Multiplicative inverses are missing.)

 $\mathbb N,$ the natural numbers. (Missing both additive inverses and multiplicative inverses.)

Assignment due next class

- Write solutions to Exercises 1.1.3 and 1.1.5.
- Read subsection 1.2.1 in the textbook.