Supremum and infimum, maximum and minimum

Examples

- $E=\left\{\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$
$\sup (E)=1 / 2, \inf (E)=-1$
If $\sup (E)$ is an element of E (as it is in this example), you may write $\max (E)$; similarly for inf and min.
- $E=\{\arctan (x): x \in \mathbb{R}\}$ Based on the graph, $\sup (E)=\pi / 2$, and $\inf (E)=-\pi / 2$. Here we may not write max and min, for the bounds are not elements of the set E.
- Exercise 1.1.10

Characterization of \mathbb{R}

\mathbb{R} is the unique complete, ordered field
(the unique ordered field having the least-upper-bound property).

Cardinality

Two sets have the same cardinality when their elements can be put into one-to-one correspondence with each other.

Example

The set of positive rational numbers and the set \mathbb{N} of natural numbers have the same cardinality. Here is a bijection.

$$
\begin{aligned}
& \text { example: } \quad \frac{3^{2} \times 7^{5} \times 19^{50}}{2^{4} \times 11^{9}} \mapsto 2^{8} \times 11^{18} \times 3^{3} \times 7^{9} \times 19^{99} ; \\
& \text { general formula: } \quad \frac{\prod_{j=1}^{*} p_{j}^{m_{j}}}{\prod_{k=1}^{* *} q_{k}^{n_{k}}} \mapsto \prod_{k=1}^{* *} q_{k}^{2 n_{k}} \prod_{j=1}^{*} p_{j}^{2 m_{j}-1}
\end{aligned}
$$

Assignment due next class

- Write a solution to Exercise 1.1.6.
- Read the rest of section 1.2 in the textbook.

