Warm-up exercise

Suppose A and B are bounded sets of real numbers.

1. If $C=A \cup B$ (the union), then what can you say about $\sup (C)$ in terms of $\sup (A)$ and $\sup (B)$?
Answer: $\sup (C)=\max \{\sup (A), \sup (B)\}$
2. If $D=A \cap B$ (the intersection), then what can you say about $\sup (D)$ in terms of $\sup (A)$ and $\sup (B)$?
Answer: $\sup (A \cap B) \leq \min \{\sup (A), \sup (B)\}$, but equality does not necessarily hold.
3. If $E=A \backslash B$ (the complement), then what can you say about $\sup (E)$ in terms of $\sup (A)$ and $\sup (B)$?
Answer: $\sup (A \backslash B) \leq \sup (A)$, but equality does not necessarily hold.

Example of a non-Archimedean ordered field

The rational functions (ratios of polynomials),
objects like $\frac{5 x^{3}+\pi x^{2}-\frac{22}{7}}{2 x^{2}-\sqrt{8}}$,
form a field.
This field can be ordered by declaring a rational function to be "positive" when the ratio of leading coefficients is positive.

In this field, the element x (the rational function $x / 1$) is not only positive but "infinitely large" (greater than every natural number).

In this field, the subset \mathbb{N} is bounded above but has no least upper bound.

Assignment due next class

- Write a solution to Exercise 1.2.1.
- Read section 1.3 in the textbook.

