Follow-up from last time

Are these sequences increasing? decreasing? monotonic? bounded? convergent? Cauchy?

(a) $x_n = 1/n$

Bounded, monotonically decreasing, Cauchy, converges to 0.

(b)
$$x_n = \cos(\pi n)$$

Bounded, not monotonic, divergent, not Cauchy.

(c)
$$x_n = 2^n$$

Monotonically increasing, unbounded, divergent, not Cauchy.

(d)
$$x_n = 2^{1/n}$$

Monotonically decreasing, bounded, Cauchy, converges to 1.

(e)
$$x_n = \cos(n)$$

Bounded, not monotonic, divergent, not Cauchy, not obvious.

Examples of subsequences

Suppose $x_n = \cos(\frac{n\pi}{2})$. Do the following subsequences of $\{x_n\}_{n=1}^{\infty}$ converge or diverge?

- ► ${x_{2k}}_{k=1}^{\infty}$ Alternating ±1, so diverges.
- {x_j²}_{j=1}[∞] or 0, 1, 0, 1, Bounded but oscillating subsequence, so diverges.
- {x_{2ⁱ}}[∞]_{i=1} or −1, 1, 1, Bounded, (weakly) increasing, monotonic, convergent to limit 1, Cauchy sequence too.

Assignment due next class

- ▶ Write solutions to Exercises 2.1.15 and 2.1.20.
- Read subsection 2.2.2 in the textbook.