Reminder

The first exam takes place in class on February 16 (a week from Friday).

A first theorem about existence of limits

Theorem (Monotone Convergence)

If a sequence is increasing and bounded above, then the sequence converges (and the limit is the least upper bound of the terms).

Example

Prove that if $x_1 = 1$, and $x_{n+1} = \sqrt{2 + x_n}$ when $n \ge 1$, then $\lim_{n \to \infty} x_n$ exists.

Sketch of proof by induction.

Basis step for increasing: $x_2 = \sqrt{2+1} > 1 = x_1$. Induction step for increasing: Suppose *n* is a natural number for which $x_{n+1} \ge x_n$. Then $x_{n+2} = \sqrt{2+x_{n+1}} \ge \sqrt{2+x_n} = x_{n+1}$. Basis step for bounded above by 4: $x_1 = 1 < 4$. Induction step for bounded above by 4: If *n* is a natural number for which $x_n \le 4$, then $x_{n+1} = \sqrt{2+x_n} \le \sqrt{2+4} < 4$.

Continuation

Theorem

If a sequence is decreasing and bounded below, then the sequence converges (and the limit is the greatest lower bound of the terms). In the preceding example, if x_1 is changed to be 3, then the recursively defined sequence will be decreasing, with limit 2.

Assignment due next class

- Suppose {x_n}[∞]_{n=1} is a sequence with the property that every subsequence converges to some limit, possibly different limits for different subsequences. Prove that in fact all the subsequences must have the same limit. [not hard]
- 2. Suppose $\{x_n\}_{n=1}^{\infty}$ is a sequence, and *L* is a number with the property that every subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ has a subsubsequence $\{x_{n_{k_i}}\}_{i=1}^{\infty}$ that converges to *L*. Prove that the original sequence $\{x_n\}_{n=1}^{\infty}$ must be convergent. [hard]
- 3. Read subsection 2.2.3 in the textbook.