Reminder

The first exam takes place in class on February 16 (a week from Friday).

A first theorem about existence of limits

Theorem (Monotone Convergence)

If a sequence is increasing and bounded above, then the sequence converges (and the limit is the least upper bound of the terms).

Example
Prove that if $x_{1}=1$, and $x_{n+1}=\sqrt{2+x_{n}}$ when $n \geq 1$, then $\lim _{n \rightarrow \infty} x_{n}$ exists.

Sketch of proof by induction.
Basis step for increasing: $x_{2}=\sqrt{2+1}>1=x_{1}$. Induction step for increasing: Suppose n is a natural number for which $x_{n+1} \geq x_{n}$. Then $x_{n+2}=\sqrt{2+x_{n+1}} \geq \sqrt{2+x_{n}}=x_{n+1}$. Basis step for bounded above by 4: $x_{1}=1<4$. Induction step for bounded above by 4: If n is a natural number for which $x_{n} \leq 4$, then $x_{n+1}=\sqrt{2+x_{n}} \leq \sqrt{2+4}<4$.

Continuation

Theorem
If a sequence is decreasing and bounded below, then the sequence converges (and the limit is the greatest lower bound of the terms).
In the preceding example, if x_{1} is changed to be 3 , then the recursively defined sequence will be decreasing, with limit 2.

Assignment due next class

1. Suppose $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence with the property that every subsequence converges to some limit, possibly different limits for different subsequences. Prove that in fact all the subsequences must have the same limit. [not hard]
2. Suppose $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence, and L is a number with the property that every subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ has a subsubsequence $\left\{x_{n_{k_{i}}}\right\}_{i=1}^{\infty}$ that converges to L. Prove that the original sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ must be convergent. [hard]
3. Read subsection 2.2.3 in the textbook.
