Three views of lim sup of a bounded sequence $\{x_n\}_{n=1}^{\infty}$

- lim sup x_n is the largest limit of any convergent subsequence of n→∞ the sequence {x_n}_{n=1}[∞].
- 2. $\lim_{n\to\infty} \sup x_n = \lim_{n\to\infty} (\sup\{x_k : k \ge n\}) = \inf_n (\sup\{x_k : k \ge n\})$
- 3. $\limsup_{n\to\infty} x_n = L$ means that for every positive number ε ,
 - ▶ there exists an *M* such that $x_n < L + \varepsilon$ when $n \ge M$, and also
 - for every *M* there exists an *n* greater than *M* for which $x_n > L \varepsilon$.

A general question

The real numbers have

- an algebraic structure (addition and multiplication)
- 2. an order structure (the relation \leq makes \mathbb{R} into an ordered field)
- 3. a metric structure

(|x - y| represents the distance between x and y)

Is the operation of taking lim sup compatible with these three structures?

lim sup and algebraic operations

Are the following properties true?

$$\limsup_{n \to \infty} (x_n + y_n) \stackrel{?}{=} \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n$$
$$\limsup_{n \to \infty} (x_n y_n) \stackrel{?}{=} (\limsup_{n \to \infty} x_n) (\limsup_{n \to \infty} y_n)$$

No, because the two sequences might be "out of phase": consider $x_n = (-1)^n$ and $y_n = (-1)^{n+1}$.

Assignment due next class

- 1. Read subsections 2.3.2–2.3.3.
- 2. Prove that

(a)
$$\limsup_{n \to \infty} (x_n + y_n) \le \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n$$

(b)
$$\left|\limsup_{n \to \infty} x_n\right| \le \limsup_{n \to \infty} |x_n|$$