lim sup, lim inf, and lim [Theorem 2.3.5]

Theorem
$\lim _{n \rightarrow \infty} x_{n}$ exists if and only if $\limsup _{n \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} x_{n}$.
The idea: limit corresponds to the inequality $L-\varepsilon<x_{n}<L+\varepsilon$.
lim sup addresses the right-hand inequality, and liminf addresses the left-hand inequality.

"I'm lit" exercise

Definition of limit: $\forall \varepsilon>0 \exists M$ such that $\forall n \geq M\left|x_{n}-L\right|<\varepsilon$. What do the following inebriated versions say about a sequence?

1. $\forall \varepsilon>0 \exists M \exists n \geq M$ such that $\left|x_{n}-L\right|<\varepsilon$
2. $\forall \varepsilon>0 \quad \forall M \exists n \geq M$ such that $\left|x_{n}-L\right|<\varepsilon$
3. $\forall \varepsilon>0 \quad \forall M \quad \forall n \geq M \quad\left|x_{n}-L\right|<\varepsilon$
4. $\exists \varepsilon>0$ such that $\forall M \exists n \geq M$ such that $\left|x_{n}-L\right|<\varepsilon$
5. $\exists \varepsilon>0$ such that $\forall M \quad \forall n \geq M\left|x_{n}-L\right|<\varepsilon$
6. $\exists \varepsilon>0 \exists M$ such that $\forall n \geq M\left|x_{n}-L\right|<\varepsilon$
7. $\exists \varepsilon>0 \exists M \exists n \geq M$ such that $\left|x_{n}-L\right|<\varepsilon$
8. $\exists M$ such that $\forall \varepsilon>0 \quad \forall n \geq M\left|x_{n}-L\right|<\varepsilon$

Answers

1. Either some term of the sequence equals L, or there exists a subsequence that converges to L.
2. There exists a subsequence that converges to L.
3. The sequence is the constant sequence L, L, \ldots.
4. There exists a bounded subsequence.
5. The sequence is bounded.
6. The sequence is bounded.
7. This property holds for every sequence.
8. The sequence is eventually constant.

Assignment due next class

Finish reading sections 2.3-2.4 in the textbook.

