Sequences and series

```
A sequence means a list of numbers: x_1, x_2, x_3, \dots
Notation: \{x_n\}_{n=1}^{\infty}
```

```
A series means a sum of a list: x_1 + x_2 + x_3 + \cdots.
Notation: \sum_{n=1}^{\infty} x_n
```

A series converges when the sequence of partial sums converges:

$$x_1, x_1 + x_2, x_1 + x_2 + x_3, \ldots$$

Geometric series

You showed that
$$\sum_{k=0}^{n-1} r^k = \frac{1-r^n}{1-r}$$
 when $r \neq 1$ [Exercise 2.5.1].

Taking the limit with respect to n shows that

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r} \qquad \text{when} \qquad |r| < 1$$

Example $\sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^k = 3.$

Cauchy's condensation test

If $\{x_n\}_{n=1}^{\infty}$ is a **decreasing** sequence of positive numbers, then the series $\sum_{n=1}^{\infty} x_n$ converges if and only if the series $\sum_{n=1}^{\infty} 2^n x_{2^n}$ converges. n=1n=1Example Does $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge? Since $\frac{1}{r^2}$ decreases when *n* increases, the question reduces to convergence of the series $\sum_{n=1}^{\infty} 2^n \frac{1}{(2^n)^2}$. This new series equals $\sum_{n=1}^{\infty} \frac{1}{2^n}$, which is a convergent geometric series. So the original series converges too.

Note. The limits are different:
$$\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$$
, but $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Assignment due next class

- Read subsection 2.5.1 in the textbook.
- ▶ Write solutions to Exercises 2.4.7 and 2.5.3(a).