Sequences and series

A sequence means a list of numbers: $x_{1}, x_{2}, x_{3}, \ldots$. Notation: $\left\{x_{n}\right\}_{n=1}^{\infty}$

A series means a sum of a list: $x_{1}+x_{2}+x_{3}+\cdots$.
Notation: $\sum_{n=1}^{\infty} x_{n}$
A series converges when the sequence of partial sums converges:

$$
x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3}, \ldots
$$

Geometric series

You showed that $\sum_{k=0}^{n-1} r^{k}=\frac{1-r^{n}}{1-r}$ when $r \neq 1 \quad$ [Exercise 2.5.1].
Taking the limit with respect to n shows that

$$
\sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r} \quad \text { when } \quad|r|<1
$$

Example
$\sum_{k=0}^{\infty}\left(\frac{2}{3}\right)^{k}=3$.

Cauchy's condensation test

If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a decreasing sequence of positive numbers, then the
series $\sum_{n=1}^{\infty} x_{n}$ converges if and only if the series $\sum_{n=1}^{\infty} 2^{n} x_{2^{n}}$ converges.
Example
Does $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converge?
Since $\frac{1}{n^{2}}$ decreases when n increases, the question reduces to convergence of the series $\sum_{n=1}^{\infty} 2^{n} \frac{1}{\left(2^{n}\right)^{2}}$. This new series equals $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$, which is a convergent geometric series. So the original series converges too.
Note. The limits are different: $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1$, but $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

Assignment due next class

- Read subsection 2.5.1 in the textbook.
- Write solutions to Exercises 2.4.7 and 2.5.3(a).

