Series with some positive and some negative terms

Example: the alternating harmonic series
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Although the seriesl+§+§+1+---(with all plus signs)

diverges, the series with alternating signs converges. Why?
Pair up consecutive terms to write the series as
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Absolute convergence
Theorem

If Z |xn| converges, then Zx,, converges.
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“An absolutely convergent series converges.”
Proof.

The goal is to show that the partial sums of the series form a

Cauchy sequence. So fix a positive €. We seek an M such that
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whenever n > M and m > M, we have < g, or
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< e. By the triangle inequality,
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works for Zxk.



If absolute convergence fails, what tests are available?

Theorem (Alternating series test)

If {xn}°2, is a decreasing sequence of positive numbers, and if
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lim x, =0, then the series g (—1)"x, converges.
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Theorem (Dirichlet’s test)

If {xn}52 is a decreasing sequence of positive numbers, and if

Ii_)m xp =0, and if {yn,}°°, is a sequence that has bounded partial
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sums, then ZX” Yn converges.
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[The alternating series test is the special case of Dirichlet's test
when y, = (=1)"]
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Non-obvious example: E ———= converges.
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Assignment over Spring Break

Travel safely, and converge absolutely to College Station in the
limit as t tends to 3/18.



