## Series with some positive and some negative terms

Example: the alternating harmonic series
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$
Although the series $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$ (with all plus signs) diverges, the series with alternating signs converges. Why?
Pair up consecutive terms to write the series as
$\sum_{n=1}^{\infty}\left(\frac{1}{2 n-1}-\frac{1}{2 n}\right)$ or $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n)}$ and observe that
$\frac{1}{(2 n-1)(2 n)}<\frac{1}{n^{2}}$. The paired-up series has positive terms and
converges by comparison with the convergent series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
It is not obvious that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\log (2)$.

## Absolute convergence

Theorem
If $\sum_{n=1}^{\infty}\left|x_{n}\right|$ converges, then $\sum_{n=1}^{\infty} x_{n}$ converges.
"An absolutely convergent series converges."

## Proof.

The goal is to show that the partial sums of the series form a Cauchy sequence. So fix a positive $\varepsilon$. We seek an $M$ such that whenever $n \geq M$ and $m \geq M$, we have $\left|\sum_{k=1}^{n} x_{k}-\sum_{k=1}^{m} x_{k}\right|<\varepsilon$, or $\left|\sum_{k=m+1}^{n} x_{k}\right|<\varepsilon$. By the triangle inequality, $\left|\sum_{k=m+1}^{n} x_{k}\right| \leq \sum_{k=m+1}^{n}\left|x_{k}\right|$, so the $M$ that works for $\sum_{k}\left|x_{k}\right|$ also works for $\sum_{k} x_{k}$.

## If absolute convergence fails, what tests are available?

Theorem (Alternating series test)
If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a decreasing sequence of positive numbers, and if
$\lim _{n \rightarrow \infty} x_{n}=0$, then the series $\sum_{n=1}^{\infty}(-1)^{n} x_{n}$ converges.
Theorem (Dirichlet's test)
If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a decreasing sequence of positive numbers, and if $\lim _{n \rightarrow \infty} x_{n}=0$, and if $\left\{y_{n}\right\}_{n=1}^{\infty}$ is a sequence that has bounded partial sums, then $\sum_{n=1}^{\infty} x_{n} y_{n}$ converges.
[The alternating series test is the special case of Dirichlet's test when $y_{n}=(-1)^{n}$.]
Non-obvious example: $\sum_{n=1}^{\infty} \frac{\cos (n)}{n}$ converges.

## Assignment over Spring Break

Travel safely, and converge absolutely to College Station in the limit as $t$ tends to $3 / 18$.

