
Series with some positive and some negative terms

Example: the alternating harmonic series
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diverges, the series with alternating signs converges. Why?
Pair up consecutive terms to write the series as
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. The paired-up series has positive terms and

converges by comparison with the convergent series
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It is not obvious that
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= log(2).



Absolute convergence

Theorem

If
∞∑
n=1

|xn| converges, then
∞∑
n=1

xn converges.

“An absolutely convergent series converges.”

Proof.
The goal is to show that the partial sums of the series form a
Cauchy sequence. So fix a positive ε. We seek an M such that

whenever n ≥ M and m ≥ M, we have
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If absolute convergence fails, what tests are available?

Theorem (Alternating series test)

If {xn}∞n=1 is a decreasing sequence of positive numbers, and if

lim
n→∞

xn = 0, then the series
∞∑
n=1

(−1)nxn converges.

Theorem (Dirichlet’s test)

If {xn}∞n=1 is a decreasing sequence of positive numbers, and if
lim
n→∞

xn = 0, and if {yn}∞n=1 is a sequence that has bounded partial

sums, then
∞∑
n=1

xnyn converges.

[The alternating series test is the special case of Dirichlet’s test
when yn = (−1)n.]

Non-obvious example:
∞∑
n=1

cos(n)

n
converges.



Assignment over Spring Break

Travel safely, and converge absolutely to College Station in the
limit as t tends to 3/18.


