Reminder

The second exam takes place on Wednesday, March 28.
Material covered: sections 2.3, 2.4, 2.5, 2.6.1, 2.6.2, 3.1.

Introduction to the next topic: Continuous functions

A function f is called continuous when it preserves convergent sequences: namely,

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(\lim _{n \rightarrow \infty} x_{n}\right) .
$$

Reminders on function terminology

- domain of a function: the set of all the inputs
- codomain of a function: the target space
- range of a function: the set of all the outputs

Example
$f:[-\pi, \pi] \rightarrow \mathbb{R}$ defined by $f(x)=\sin (x)$.
The domain is the closed interval $[-\pi, \pi]$, the codomain is \mathbb{R}, the range is the closed interval $[-1,1]$.
In this course, usually the domain is a subset of \mathbb{R}, the range is a subset of \mathbb{R}, the codomain is \mathbb{R}.

Terminology for points and sets

- A point p of a set S is an isolated point of S if there is some neighborhood $(p-\varepsilon, p+\varepsilon)$ that contains no other point of S. Example: If $S=\mathbb{N}$, then every point of S is isolated. Example: If $S=\mathbb{Q}$, then no point of S is isolated.
- A point of S that is not isolated is a cluster point. More generally, a point p that might or might not belong to S is called a cluster point of S if p is not an isolated point of $S \cup\{p\}$.
Example: If $S=\mathbb{Q}$, then every real number is a cluster point of S.

Synonyms for cluster point: accumulation point, limit point.

Equivalent formulations of the notion of cluster point

A point p is a cluster point of set S if

- every neighborhood of p contains some point of S different from p, or
- for every positive ε, there exists some x in S such that $x \neq p$ and $|x-p|<\varepsilon$, or
- there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty} x_{n}=p$, and $x_{n} \in S$ for every n, and $x_{n} \neq p$ for every n.

Example
If S is the open interval $(0,1)$, then the cluster points of S are all points of the closed interval $[0,1]$.

Assignment due next class

- Read sections 3.1.1 and 3.1.2 in the textbook.
- If I were to put Exercise 2.3.9 on the exam, would you be happy?

