Exam results

Average 86: great job!

Continuous functions

A function $f: S \rightarrow \mathbb{R}$ is continuous at a point c in S when

- either c is an isolated point of S,
- or c is a cluster point of S, and
- $\lim _{x \rightarrow c} f(x)$ exists, and
- $\lim _{x \rightarrow c} f(x)=f(c)$.

Equivalent statement in terms of sequences:
For every sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of points of S such that $\lim _{n \rightarrow \infty} x_{n}=c$, the image sequence $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ converges to $f(c)$.

Some examples

- Since limits of sequences preserve sums and products, every polynomial function is continuous at every real number.
- Similarly, rational functions (ratios of polynomials) are continuous at points where the denominator is nonzero.
- The sine function and the cosine function are continuous at every real number.
(The book sketches a proof by using trigonometric identities.)
- The exponential function e^{x}.

A function operation that has no sequence analogue

The composite function $f \circ g$ sends the input x to the output $f(g(x))$.

Example: $\cos \left(x^{2}\right)$.
Composing two continuous functions produces another continuous function.

Assignment due next class

- Read section 3.2 in the textbook.
- Find two functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$, each of which has a point of discontinuity, yet the composite functions $f \circ g$ and $g \circ f$ are everywhere continuous.

