Recap: Continuous functions

A function $f: S \rightarrow \mathbb{R}$ is continuous at a point c in S when

- either c is an isolated point of S,
- or c is a cluster point of S, and
- $\lim _{x \rightarrow c} f(x)$ exists, and
- $\lim _{x \rightarrow c} f(x)=f(c)$.

Equivalent statement in terms of sequences:
For every sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of points of S such that $\lim _{n \rightarrow \infty} x_{n}=c$, the image sequence $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ converges to $f(c)$.

Equivalent quantified statement:
For every positive ε, there exists a positive δ such that the inequality $|x-c|<\delta$ implies the inequality $|f(x)-f(c)|<\varepsilon$ when x is in S.

Two important properties of the range of a continuous function whose domain is a closed bounded interval

Theorem
Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Then

1. the range of f is a bounded set that contains both its supremum and its infimum, and
2. the range of f is an interval (a degenerate interval if f is a constant function).

Conclusion 1 is the extreme-value theorem (called the min-max theorem in the book). It says that the function f attains a maximum value and also attains a minimum value.

Conclusion 2 is the intermediate-value theorem. It says that if numbers c and d are in the range of f, then every number between c and d is in the range of f.

Proof of the intermediate-value theorem

The main step is to show that if $f(a)<f(b)$, and v is a value between $f(a)$ and $f(b)$, then there is some x between a and b such that $f(x)=v$. Strategy: use the least-upper bound property of \mathbb{R}.

Let E be $\{x \in[a, b]: f(x)<v\}$, and let s denote $\sup E$. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of points of E having limit equal to s.

The image sequence $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ converges to $f(s)$ because f is continuous.
But $f\left(x_{n}\right)<v$ for every n, so $f(s) \leq v$.
Now $s<b$, and if n is large enough that $s+\frac{1}{n}<b$, then $f\left(s+\frac{1}{n}\right)$ is defined and $\geq v$. So $f(s)=\lim _{n \rightarrow \infty} f\left(s+\frac{1}{n}\right) \geq v$.

Since $f(s) \leq v$ and also $f(s) \geq v$, the number s is the one we seek.

Assignment due next class

Write solutions to Exercises 3.3.1 and 3.3.2.

