Warm-up Exercise

Prove by induction that the derivative of x^{n} equals $n x^{n-1}$ when n is a positive integer.

Proof.

Induction step: Suppose n is a natural number for which we know that the derivative of x^{n} is $n x^{n-1}$. Then view x^{n+1} as the product of x and x^{n}.
The product rule implies that the derivative of $x \cdot x^{n}$ equals the sum of the two terms $1 \cdot x^{n}$ and $x \cdot n x^{n-1}$, which equals $(n+1) x^{n}$. \square

Refresher on the chain rule

If $f(x)=\sin (2 x+\tan (x))$,
then $f^{\prime}(x)=\cos (2 x+\tan (x)) \cdot\left(2+\sec ^{2}(x)\right)$.
In general, $f \circ g$ means the function whose value at x is $f(g(x))$, and $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.

Proof of the chain rule for composite functions

Suppose g is differentiable at c, and the range of g is a subset of the domain of f, and f is differentiable at $g(c)$.
Property 2 provides a function F, continuous at $g(c)$, such that

$$
\begin{aligned}
f(y) & =F(y)(y-g(c))+f(g(c)), \\
f(g(x)) & =F(g(x))(g(x)-g(c))+f(g(c))
\end{aligned}
$$

There is a function G, continuous at c, such that

$$
\begin{aligned}
g(x) & -g(c)=G(x)(x-c), \\
f(g(x)) & =F(g(x)) G(x)(x-c)+f(g(c))
\end{aligned}
$$

Therefore the composite function $f(g(x))$ is differentiable at c, and the derivative at c equals $F(g(c)) G(c)$, or $f^{\prime}(g(c)) g^{\prime}(c)$.

Assignment due next class

Write a solution to Exercise 4.1.10.

