What goes up must come down

Theorem (Rolle's theorem)
If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, and $f(a)=f(b)$, and the derivative f^{\prime} exists at all points of (a, b), then there is some point c (at least one) in the interval (a, b) for which $f^{\prime}(c)=0$.

Proof.
Apply the extreme-value theorem. If the max and min both occur at the endpoints, then the function is constant, so f^{\prime} is identically zero.
Otherwise, let c be an interior point where there is an extreme value, WLOG a maximum. The numerator of the fraction $\frac{f(x)-f(c)}{x-c}$ is ≤ 0. The denominator is positive when $x>c$ and negative when $x<c$, so the limit of the fraction is both ≤ 0 and ≥ 0, hence $=0$. And this limit is $f^{\prime}(c)$.

Example

Suppose

$$
p(x)=x^{5}+3 x^{4}-5 x^{3}-15 x^{2}+4 x+12
$$

Observe that $p(0)=12, p(1)=0$, and $p(-1)=0$, so the derivative $5 x^{4}+12 x^{3}-15 x^{2}-30 x+4$ must equal 0 at some point between -1 and 1 .

The mean-value theorem

Theorem (mean-value theorem, basic version)
If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, and the derivative f^{\prime} exists at all points of (a, b), then there exists a point c in (a, b) for which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

Assignment due next class

Write a solution to Exercise 4.2.11.

