## Recap: Rolle's Theorem

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, and $f(a)=f(b)$, and the derivative $f^{\prime}$ exists at all points of $(a, b)$, then there is some point $c$ (at least one) in the interval $(a, b)$ for which $f^{\prime}(c)=0$.

Proof sketch: The derivative must equal 0 at a point of $(a, b)$ where $f$ has a maximum or a minimum.

## The "theorem of the mean"

Theorem (mean-value theorem, basic version)
If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, and the derivative $f^{\prime}$ exists at all points of $(a, b)$, then there exists a point $c$ in $(a, b)$ for which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$



## Cauchy's form of the mean-value theorem

Theorem (not in the book)
If $f$ and $g$ are two continuous functions on $[a, b]$ that are differentiable at all points of $(a, b)$, then there is a point $c$ in $(a, b)$ for which $g^{\prime}(c)(f(b)-f(a))=f^{\prime}(c)(g(b)-g(a))$.

## Proof of the mean-value theorem

Consider the function $g(x)(f(b)-f(a))-f(x)(g(b)-g(a))$. This continuous function has the same value $f(b) g(a)-g(b) f(a)$ at both endpoints, so by Rolle's theorem, there is a point $c$ where the derivative equals 0 . That conclusion proves Cauchy's mean-value theorem.

For the basic version of the mean-value theorem, take $g$ to be the identity function: $g(x)=x$.

## Some applications of the mean-value theorem

- If $f^{\prime}$ is identically equal to 0 on an interval, then $f$ is constant on the interval. [Proposition 4.2.5]
- If $f^{\prime}(x)>0$ an interval, then $f(x)$ is strictly increasing. [See Example 4.2.7.]
- If the derivative $f^{\prime}(x)$ is bounded on an interval, then $f(x)$ is uniformly continuous. [See Exercise 4.2.3.]


## Assignment due next class

Write solutions to Exercises 4.2.3 and 4.2.5.

