Recap: Cauchy's version of the mean-value theorem

If f and g are two continuous functions on $[a, b]$ that are differentiable at all points of (a, b), then there is a point c in (a, b) for which

$$
g^{\prime}(c)(f(b)-f(a))=f^{\prime}(c)(g(b)-g(a))
$$

If $g(x)$ is the identity function x, then the conclusion reduces to

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

the basic version of the mean-value theorem.

I'Hôpital's rule

Suppose f and g are differentiable functions on an interval, except perhaps at one point b.

Suppose additionally that $\lim _{x \rightarrow b} f(x)=0=\lim _{x \rightarrow b} g(x)$ and that both $g(x)$ and $g^{\prime}(x)$ are different from 0 when x is in some punctured neighborhood of b.
If $\lim _{x \rightarrow b} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then $\lim _{x \rightarrow b} \frac{f(x)}{g(x)}$ does too, and these limits agree.

Examples of l'Hôpital's rule

- $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x}=\lim _{x \rightarrow 0} \frac{2 \cos (2 x)}{1}=2$
- $\lim _{x \rightarrow 0} \frac{\cos (x)-1+\frac{1}{2} x^{2}}{x^{4}}=\frac{1}{24}$ by multiple applications of
l'Hôpital's rule

Proof of I'Hôpital's rule

The functions f and g have "removable discontinuities" at b : defining $f(b)$ and $g(b)$ to be 0 makes f and g continuous at b. For each x, Cauchy's form of the mean-value theorem applies on the interval between b and x : there is a point c_{x} between b and x such that $g^{\prime}\left(c_{x}\right)(f(x)-f(b))=f^{\prime}\left(c_{x}\right)(g(x)-g(b))$, or $g^{\prime}\left(c_{x}\right) f(x)=f^{\prime}\left(c_{x}\right) g(x)$.
Then $\frac{f(x)}{g(x)}=\frac{f^{\prime}\left(c_{x}\right)}{g^{\prime}\left(c_{x}\right)}$ (division being possible by the hypothesis that $g(x)$ and $g^{\prime}\left(c_{x}\right)$ are not equal to 0).
When $x \rightarrow b$, so does the in-between point c_{x}.
So the existence of the limit of the ratio of derivatives implies the existence of $\lim _{x \rightarrow b} \frac{f(x)}{g(x)}$, and the two limits match.

Introduction to Taylor's theorem

Replace b with x in the statement of the mean-value theorem:

$$
\frac{f(x)-f(a)}{x-a}=f^{\prime}(c)
$$

or, equivalently,

$$
f(x)=f(a)+f^{\prime}(c)(x-a)
$$

(where c depends on x).
Second-order generalization: If $f^{\prime \prime}$ (the second derivative) exists on some interval containing a and x, then there is some c between a and x for which

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(c)(x-a)^{2}
$$

Assignment due next class

Review exercises (not to hand in):

1. Why does the sequence $\left\{\frac{2^{n}}{n!}\right\}_{n=1}^{\infty}$ converge?
2. Why does the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converge?
3. Determine $\sup \left\{\frac{2^{n}}{n!}: n \in \mathbb{N}\right\}$.
4. Determine $\limsup _{n \rightarrow \infty} \frac{2^{n}}{n!}$.
