Darboux's modification of Riemann's amplification of Cauchy's idea for defining the integral

Suppose f is a bounded function on $[a, b]$.
For an arbitrary natural number n, partition the interval into n pieces: $a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b$.

For each k between 1 and n, let M_{k} denote $\sup \left\{f(x): x_{k-1} \leq x \leq x_{k}\right\}$.
Then $\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right)$ is an upper sum for f on $[a, b]$.
Similarly define lower sums by replacing sup with inf.
If the infimum of all the upper sums equals the supremum of all the lower sums, then f is declared to be an integrable function, and the indicated value is the integral $\int_{a}^{b} f(x) d x$ (or $\int_{a}^{b} f$ for short).

Practice/review exercises (not to hand in)

(1) Prove by induction that $\sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(2) For the function x^{2} on the interval [0,1$]$, consider a partition with n subintervals of equal width. Show that the upper sum equals $\sum_{j=1}^{n} \frac{1}{n} \cdot\left(\frac{j}{n}\right)^{2}$, and the lower sum equals $\sum_{j=0}^{n-1} \frac{1}{n} \cdot\left(\frac{j}{n}\right)^{2}$.
(3) Deduce from (1) and (2) that $\int_{0}^{1} x^{2} d x=\frac{1}{3}$.

