Darboux's modification of Riemann's amplification of Cauchy's idea for defining the integral

Suppose f is a bounded function on [a, b].

For an arbitrary natural number n, partition the interval into n pieces: $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$.

For each k between 1 and n, let M_k denote sup{ $f(x) : x_{k-1} \le x \le x_k$ }.

Then
$$\sum_{k=1}^{n} M_k(x_k - x_{k-1})$$
 is an *upper sum* for f on $[a, b]$.

Similarly define lower sums by replacing sup with inf.

If the infimum of all the upper sums equals the supremum of all the lower sums, then f is declared to be an *integrable function*, and the indicated value is the integral $\int_{a}^{b} f(x) dx$ (or $\int_{a}^{b} f$ for short).

Practice/review exercises (not to hand in)

(1) Prove by induction that
$$\sum_{j=1}^n j^2 = \frac{n(n+1)(2n+1)}{6}$$

(2) For the function x² on the interval [0, 1], consider a partition with *n* subintervals of equal width. Show that the upper sum equals ∑_{j=1}ⁿ 1/n ⋅ (j/n)², and the lower sum equals ∑_{j=0}ⁿ⁻¹ 1/n ⋅ (j/n)².
(3) Deduce from (1) and (2) that ∫₀¹ x² dx = 1/3.