Announcements/reminders

- Class meets Monday (April 30) and Tuesday (May 1).
- I will hold my usual office hour 3:00-4:00 in the afternoon on Tuesday (May 1) and Thursday (May 3).
- The comprehensive final examination takes place 8:00-10:00 on Monday morning (May 7).
- Material for the final exam: sections 0.3, 1.1-1.4, 2.1-2.5, 2.6.1, 2.6.2, 3.1-3.4, 4.1-4.4, 5.1-5.3.

Recap on integrable functions

For a partition $a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b$, and $M_{k}:=\sup \left\{f(x): x_{k-1} \leq x \leq_{n} x_{k}\right\}$, the corresponding upper sum of f on the interval $[a, b]$ is $\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right)$.

Similarly define lower sums by replacing sup with inf.
If the infimum of all the upper sums equals the supremum of all the lower sums, then f is an integrable function.

Comparison between upper sums and lower sums

If extra division points are added to a partition, the upper sum decreases (or stays the same), and the lower sum increases (or stays the same).

If P_{1} and P_{2} are two partitions, and P_{3} contains all the division points of both P_{1} and P_{2}, then
lower sum for $P_{1} \leq$ lower sum for $P_{3} \leq$

$$
\text { upper sum for } P_{3} \leq \text { upper sum for } P_{2}
$$

Therefore all the lower sums for different partitions are \leq all the upper sums for different partitions.

Proof that continuous functions are integrable

Suppose f is continuous on $[a, b]$. Fix a positive ε.
Since f is automatically uniformly continuous on $[a, b]$, there is a positive δ such that $|f(x)-f(y)| \leq \frac{\varepsilon}{b-a}$ when $|x-y| \leq \delta$.

Choose a natural number n for which $\frac{b-a}{n}<\delta$, and partition $[a, b]$ into n subintervals of equal width $\frac{b-a}{n}$. On each subinterval, the difference between $\sup f(x)$ and $\inf f(x)$ is at most $\frac{\varepsilon}{b-a}$.

Therefore the upper sum for this partition and the lower sum differ by no more than $n \cdot \frac{\varepsilon}{b-a} \cdot \frac{b-a}{n}$, or ε.

Consequently, the infimum of all upper sums and the supremum of all lower sums differ by at most ε. But ε is arbitrary, so f is an integrable function.

Practice exercise (not to hand in)

Suppose $f:[0,1] \rightarrow \mathbb{R}$ is defined as follows:

$$
f(x)= \begin{cases}1 / 2, & \text { if } 1 / 2<x \leq 1, \\ 1 / 4, & \text { if } 1 / 4<x \leq 1 / 2, \\ 1 / 2^{n}, & \text { if } 1 / 2^{n}<x \leq 1 / 2^{n-1} \\ 0, & \ldots \\ 0, & \text { if } x=0 .\end{cases}
$$

Show that f is integrable (even though f has infinitely many points of discontinuity!), and $\int_{0}^{1} f=1 / 3$.

