Announcements

- I have posted the homework averages in eCampus.
- Our final class meeting is tomorrow (May 1).
- I will hold my usual office hour 3:00-4:00 in the afternoon on Tuesday (May 1) and Thursday (May 3).

About the final exam

- The comprehensive final examination takes place 8:00-10:00 on Monday morning (May 7).
- Material for the final exam: sections 0.3, 1.1-1.4, 2.1-2.5, 2.6.1, 2.6.2, 3.1-3.4, 4.1-4.4, 5.1-5.3.
- The exam has 7 problems (in the same style as the midterm exams).
- Please bring your own paper to the exam to work on.

Recap on integrable functions

For a partition $a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b$, and $M_{k}:=\sup \left\{f(x): x_{k-1} \leq x \leq_{n} x_{k}\right\}$, the corresponding upper sum of f on the interval $[a, b]$ is $\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right)$.

Similarly define lower sums by replacing sup with inf.
If the infimum of all the upper sums equals the supremum of all the lower sums, then f is an integrable function on the interval $[a, b]$.

Theorem (Cauchy)
If f is continuous on $[a, b]$, then f is integrable.

Properties of the integral

1. Linearity:

$$
\int_{a}^{b} \lambda f(x)+\mu g(x) d x=\lambda \int_{a}^{b} f(x) d x+\mu \int_{a}^{b} g(x) d x
$$

2. Preservation of order:

$$
\text { If } f(x) \leq g(x) \text { for all } x \text {, then } \int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

3. Absolute value: $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$.
4. Interval decomposition:

$$
\text { If } a<b<c \text {, then } \int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x
$$

Fundamental theorem of calculus, part I

Theorem
If f is continuous, and $F(x)=\int_{a}^{x} f(t) d t$, then F is differentiable, and $F^{\prime}(x)=f(x)$.

Example.
What is the derivative of $\int_{x}^{b} f(t) d t$?
Solution.
Rewrite $\int_{x}^{b} f(t) d t$ as $\int_{a}^{b} f(t) d t-\int_{a}^{x} f(t) d t$
to see that the derivative is $-F^{\prime}(x)$ or $-f(x)$.

Example of the fundamental theorem combined with the

 chain ruleIf $G(x)=\int_{x^{3}}^{\sin (x)} \sqrt{1+t^{2}} d t$, find $G^{\prime}(x)$.
Solution.
Combine the chain rule with the fundamental theorem of calculus.
Rewrite the problem as $\int_{x^{3}}^{c}+\int_{c}^{\sin (x)}$.
Then by the chain rule, the derivative is

$$
-\sqrt{1+x^{6}} \cdot 3 x^{2}+\sqrt{1+\sin ^{2}(x)} \cdot \cos (x)
$$

Fundamental theorem of calculus, part II

Theorem
Suppose f is a continuous function, and F is a differentiable function such that $F^{\prime}(x)=f(x)$ for all x; that is, F is an
antiderivative of f. Then $\int_{a}^{b} f(t) d t=F(b)-F(a)$.

