Examination 1

Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

1. State one of the following: the Archimedean property of the real numbers; the BolzanoWeierstrass theorem; Cauchy's criterion for convergence.

Solution. See Theorems 1.11, 2.40, and 2.41 in the textbook.
2. Suppose A and B are bounded, non-empty sets of real numbers, and let C denote the union $A \cup B$. Show that $\sup C$ equals the maximum of the two numbers sup A and $\sup B$.

Solution. An upper bound for a set is certainly an upper bound for every subset, so sup C, the least upper bound of C, is an upper bound for both A and B. Therefore $\sup C$ is at least as big as both $\sup A$ (the least upper bound of A) and $\sup B$ (the least upper bound of B). In other words, $\sup C \geq \max \{\sup A, \sup B\}$.
On the other hand, an arbitrary element c of C either is an element of the set A, in which case

$$
c \leq \sup A \leq \max \{\sup A, \sup B\},
$$

or is an element of the set B, in which case

$$
c \leq \sup B \leq \max \{\sup A, \sup B\} .
$$

In both cases, $c \leq \max \{\sup A, \sup B\}$. In other words, $\max \{\sup A, \sup B\}$ is an upper bound for C, so $\sup C \leq \max \{\sup A, \sup B\}$.
What has been shown is that $\sup C$ is both greater than or equal to $\max \{\sup A, \sup B\}$ and less than or equal to the same quantity. Therefore equality holds.
3. Give an example of a set having at least one boundary point that is not an accumulation point and also at least one accumulation point that is not a boundary point. Explain why your example has the required properties.

Solution. A boundary point that is not an accumulation point is an isolated point. An accumulation point that is not a boundary point is an interior point. Accordingly, any set that has both an isolated point and non-empty interior serves as an example. For instance, the set $(0,1) \cup\{2\}$ is one concrete example.
4. Determine the smallest natural number k with the property that

$$
0.999<\frac{n^{2}-1}{n^{2}+1}<1.001 \quad \text { for every natural number } n \text { exceeding } 10^{k}
$$

Examination 1

Solution. This problem is related to the definition of limit but asks both less and more. The problem asks for a cut-off value of n not for an arbitrary value of ε but only for one specific value of ε, which is less than the definition of limit requires. On the other hand, the problem asks for an optimal cut-off, which is more than the definition of limit requires.

The following argument shows that the minimal value of k is 2 . In other words, the double inequality holds when $n>10^{2}$, but there is at least one value of n between 10^{1} and 10^{2} for which the inequality fails.
Since $n^{2}-1<n^{2}+1$, the fraction $\frac{n^{2}-1}{n^{2}+1}$ is always less than 1 , so the right-hand part of the required inequality holds for every natural number n. Accordingly, only the lefthand inequality needs to be studied. Subtracting 1 from both sides produces an equivalent inequality: namely,

$$
-0.001<\frac{n^{2}-1}{n^{2}+1}-1=\frac{-2}{n^{2}+1} .
$$

Multiplying by -1 reverses the direction of the inequality and yields another equivalent inequality:

$$
\begin{equation*}
0.001>\frac{2}{n^{2}+1} . \tag{*}
\end{equation*}
$$

Now if $n>10^{2}$, that is, $n>100$, then

$$
\frac{2}{n^{2}+1}<\frac{2}{100^{2}}=0.0002<0.001
$$

so $\left({ }^{*}\right)$ holds. On the other hand, if $n=11$, which is a value between 10^{1} and 10^{2}, then

$$
\frac{2}{n^{2}+1}=\frac{2}{122}=\frac{1}{61}>\frac{1}{100}=0.01>0.001,
$$

so $\left(^{*}\right)$ fails. In other words, the optimal cut-off for n of the form 10^{k} is 10^{2}.

Remark You can even solve inequality (*) explicitly. An equivalent statement is that $n^{2}+1>2000$, or $n^{2}>1999$. If you have a calculator at hand, then you can punch some buttons to see that the cut-off value for n is between 44 and 45 . But even without a calculator, you can deduce that the cut-off is between 40 and 50 , since $40^{2}=1600<1999$ and $50^{2}=2500>1999$. Pursuing this idea, observe from the binomial expansion that $(40+k)^{2}=40^{2}+2 \cdot 40 \cdot k+k^{2}$. Therefore $44^{2}=40^{2}+2 \cdot 40 \cdot 4+4^{2}=1936$, and $45^{2}=40^{2}+2 \cdot 40 \cdot 5+5^{2}=2025$. Thus no technological assistance is needed to see that the inequality holds when $n \geq 45$ and fails when $n \leq 44$.
5. Suppose E is a compact set of real numbers and F is a closed set. Is the intersection $E \cap F$ necessarily compact? Give either a proof or a counterexample, as appropriate.

Examination 1

Solution. Use the theorem that a set of real numbers is compact if and only if the set is simultaneously closed and bounded.
Since E is bounded, so is every subset of E. Since $E \cap F$ is a subset of E, the set $E \cap F$ is bounded. Moreover, the compact set E is closed, and F is closed, and the intersection of two closed sets is closed, so $E \cap F$ is closed. Thus the intersection $E \cap F$ is both bounded and closed, hence compact.

Remark On the other hand, the union $E \cup F$ need not be compact: this set is necessarily closed but could be unbounded. For a specific counterexample, take E to be the singleton set $\{0\}$ and F to be the set of natural numbers; then E is compact (closed and bounded) and F is closed (contains all its accumulation points because there are none), and the union $E \cup F$ is not compact (because not bounded).
6. Consider the sequence defined recursively as follows:

$$
x_{1}=1, \quad \text { and } \quad x_{n+1}=\log \left(1+x_{n}\right) \quad \text { when } n \geq 1
$$

Here "log" means the natural logarithm function (which is often called "ln" in elementary mathematics). Say as much as you can about the value of $\lim \sup _{n \rightarrow \infty} x_{n}$ for this sequence. Hint: Use the following diagram, which shows that the expression $\log (1+x)$ is an increasing function of x whose graph is concave down. The tangent line at the origin has slope 1 .

Solution. First observe that $\log (1+x)$ is positive when x is positive (either by looking at the diagram or by invoking prior knowledge about the logarithm function). Therefore if

Examination 1

$x_{n}>0$ for a certain value of n, then $x_{n+1}>0$ too. Since $x_{1}>0$ (basis step), induction implies that $x_{n}>0$ for every natural number n.
The diagram also shows that $\log (1+x)<x$ when x is positive. Accordingly, $x_{n+1}=$ $\log \left(1+x_{n}\right)<x_{n}$ for every natural number n. Thus the sequence is decreasing.

Since the sequence is both decreasing and bounded below by 0 , the monotone convergence theorem implies that the sequence converges to the greatest lower bound, say L. And $L \geq 0$, since limits respect the weak order relation on the real numbers.
Knowing now that the sequence has a limit, you can deduce from the recursive definition of the sequence that $L=\log (1+L)$. The diagram shows that the only nonnegative real number x for which $x=\log (1+x)$ is 0 . Thus $L=0$.
Since the sequence converges, the value of $\lim \sup _{n \rightarrow \infty} x_{n}$ equals $\lim _{n \rightarrow \infty} x_{n}$. In conclusion, $\lim \sup _{n \rightarrow \infty} x_{n}=0$.

