
Math 409 Advanced Calculus I
Examination 1

Spring 2017

Instructions: Please write your solutions on your own paper. These problems should be treated
as essay questions to answer in complete sentences.

1. This problem concerns the ordered field ℚ, the rational numbers. Your task is to exhibit a
concrete example of a bounded subset of ℚ that does not have a least upper bound in ℚ.

Solution. One example is { x ∈ ℚ ∶ 0 < x and x2 < 2 }. This set is bounded below
by 0 and above by 2 (for instance). In ℝ, the least upper bound of the set is

√

2, but
√

2 is
an irrational number, so the set has no least upper bound within the universe ℚ. (We did
essentially this example in class on January 19.)

2. Suppose that A and B are bounded intervals in ℝ having non-empty intersection C . Show
that sup(C) equals the minimum of the two numbers sup(A) and sup(B).

Solution. If c ∈ C , then in particular c ∈ A, so c ≤ sup(A); and similarly c ≤ sup(B).
Therefore both sup(A) and sup(B) are upper bounds for the set C , so whichever of these
two numbers is the smaller one is an upper bound for C .
What remains to show is that no numberM smaller than min(sup(A), sup(B)) is an upper
bound for C . To address this point, fix an element c0 of C . (By hypothesis, the set C is not
the empty set, so c0 exists.)
IfM < c0, thenM is certainly not an upper bound for C , so there is no loss of generality in
supposing that c0 ≤ M < min(sup(A), sup(B)). SinceM < sup(A), there is an element a
of the set A such thatM < a. Since the set A is an interval, the set A contains the closed
interval [c0, a]. Similarly, there is an element b of the set B such that M < b, and the
interval B contains the interval [c0, b]. Accordingly, the intersection A ∩ B contains the
interval [c0,min(a, b)]. In particular, the numbermin(a, b) is an element of C that is greater
thanM , soM is not an upper bound for C .
What has been shown is that min(sup(A), sup(B)) is an upper bound for the set C , and no
smaller number is an upper bound forC . The valuemin(sup(A), sup(B)) thus equals sup(C)
by the definition of supremum.
Remark. Your solution needs to use the assumption that the sets are intervals, for the
conclusion is not true for general sets. For example, if A is the doubleton set {1, 2}, and B
is the doubleton set {1, 3}, then sup(A ∩ B) = 1, but min(sup(A), sup(B)) = 2.
You could start by naming the endpoints of the intervals A and B. There is, however,
the complication that if the interval A has endpoints a1 and a2, then A might be the open
interval (a1, a2) or the closed interval [a1, a2] or one of the intervals [a1, a2) and (a1, a2];
and the same complication arises for B.
On the other hand, one simplification is possible. Since both the hypothesis and the con-
clusion are symmetric inA and B, you could start by saying, “There is no loss of generality
in supposing that sup(A) ≤ sup(B).”
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3. For each of the following scenarios, exhibit an example that satisfies the stated property.
a) A null sequence of real numbers that is not monotonic.

Solution. Take xn equal to (−1)n∕n, for example. The sequence (xn) is not monotonic,
for the terms alternate in sign; but the sequence is null because |xn| < " whenever
n > 1∕".

b) A monotonic sequence of real numbers that has no convergent subsequence.

Solution. One example is the sequence (n) of natural numbers. The sequence is
strictly increasing but unbounded, so every subsequence is unbounded, whence no
subsequence can converge.

c) An unbounded sequence that has a convergent subsequence.

Solution. Take xn equal to (1 + (−1)n) ⋅ n, for example. The subsequence of terms
with n being even is unbounded. The subsequence of terms with n being odd is the
constantly 0 sequence, which converges trivially.

4. Prove carefully that when (xn) is a convergent sequence of real numbers, the sequence (|xn|)
of absolute values is convergent too.

Solution. Method 1. If you know the reverse triangle inequality of Theorem 2.9.2(11)
on page 30, then you can argue as follows. Fix a positive tolerance ". The convergent
sequence (xn) is a Cauchy sequence (by Theorem 3.6.1), so there exists an N such that
|xn − xm| < " when n ≥ N and m ≥ N . But

|

|

|

|xn| − |xm|
|

|

|

≤ |xn − xm|,

so |

|

|

|xn| − |xm|
|

|

|

< " when n ≥ N and m ≥ N . Thus the sequence (|xn|) is a Cauchy
sequence of real numbers, hence is convergent (by Theorem 3.6.1 again).
Method 2. An alternative method is to go back to the definition of limit and use that
the absolute value is defined by cases. By hypothesis, there is a real number L such that
xn → L. Either L = 0, or L > 0, or L < 0.
If L = 0, then (xn) is a null sequence. Fix a positive ". The definition of null sequence
implies the existence of an N such that |xn| < " when n ≥ N . This property implies that
the sequence (|xn|) is a null sequence too.
If L > 0, then apply the definition of limit with " equal to the positive number L∕2. There
exists an N such that |xn − L| < L∕2 when n ≥ N , equivalently 0 < L∕2 < xn < 3L∕2
when n ≥ N . Thus xn is ultimately positive, so |xn| = xn ultimately. Consequently,
convergence of (xn) is the same as convergence of (|xn|) when L > 0.
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IfL < 0, then apply the definition of limit with " equal to the positive number−L∕2. There
exists anN such that |xn − L| < −L∕2 when n ≥ N , equivalently 3L∕2 < xn < L∕2 < 0
when n ≥ N . Thus xn is ultimately negative, so |xn| = −xn ultimately. Fix a positive ".
ChooseM so large that |xn − L| < " when n ≥M . If n ≥ max(N,M), then

|

|

|

|xn| − |L|||
|

= |−xn + L| = |xn − L| < ".

Accordingly, the definition of limit implies that |xn| → |L|.

5. Suppose xn = n2 − 1
n2 + 1

+ cos
(n�
3

)

for each positive integer n. Determine lim sup
n→∞

xn and

lim inf
n→∞

xn.

Solution. The fraction n
2 − 1
n2 + 1

evidently has limit equal to 1, so

lim sup xn = 1 + lim sup cos
(n�
3

)

and lim inf xn = 1 + lim inf cos
(n�
3

)

.

The values of the cosine are always between −1 and 1, and each of the extreme values is
taken frequently. Therefore lim sup xn = 2, and lim inf xn = 0.

6. State
a) the Bolzano–Weierstrass theorem, and
b) Cauchy’s criterion for convergence of a sequence of real numbers.

Solution. See Theorem 3.5.9 and Theorem 3.6.1.

Extra Credit Problem. In this problem, the universe is the power set of ℝ, that is, the set of
all subsets of the real numbers. The two operations on sets, ∪ and ∩ (union and intersection), are
somewhat analogous to addition and multiplication. The empty set serves as an identity element
for union, since∅∪A = A∪∅ = A for every setA; the whole setℝ serves as an identity element
for intersection, since ℝ ∩ A = A ∩ ℝ = A for every set A. The subset relation ⊆ provides an
order on sets: a set A is “less than or equal to” a set B if A is a subset of B. The least upper
bound of a collection of sets is their union; the greatest lower bound of a collection of sets is their
intersection.

Does the power set ofℝ, provided with the operations ∪ and ∩ and the order⊆, form a complete
ordered field? Explain why or why not.

Solution. The indicated structure is not even a field, for inverses are lacking. If A is a non-empty
set, then there is no set S for which A ∪ S = ∅; and if A is a proper subset of ℝ, then there is no
set S for which A ∩ S = ℝ.

Although not a field, this structure is an example of a complete lattice, a topic outside the scope
of the course.
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