
Math 409 Advanced Calculus
Examination 2

Spring 2018

Part A: Sentence Completion

Your answer to each of problems 1–3 should be a complete sentence that starts as indicated.

1. The Bolzano–Weierstrass theorem states that every . . . .

Solution. The Bolzano–Weierstrass theorem states that every bounded sequence has a
convergent subsequence.

2. To say that a sequence {xn}∞n=1 is a Cauchy sequence means that for every positive " . . . .

Solution. To say that a sequence {xn}∞n=1 is a Cauchy sequence means that for every pos-
itive " there exists a number M such that |xn − xk| < " whenever n ≥ M and k ≥ M .

3. The statement “lim
x→c

f (x) = L” means that c is a cluster point of the domain of f and . . . .

Solution. The statement “lim
x→c

f (x) = L” means that c is a cluster point of the domain
of f and for every positive " there exists a positive � such that |f (x) − L| < " whenever
0 < |x − c| < � and x lies in the domain of f .
Equivalently, the statement “lim

x→c
f (x) = L” means that c is a cluster point of the domain

of f and for every sequence {xn}∞n=1 in the domain of f such that xn ≠ c for every n and
lim
n→∞

xn = c, the image sequence {f (xn)}∞n=1 converges to L.

Part B: Examples

Your task in problems 4–5 is to exhibit a concrete example satisfying the indicated property. You
should provide a brief explanation of why your example works.

4. Give an example of a bounded sequence {xn}∞n=1 having the property that

sup{xn ∶ n ≥ 1} ≠ lim sup
n→∞

xn.

Solution. If xn = 1∕n, then limn→∞ xn = 0, hence lim supn→∞
xn = 0. But sup{xn ∶ n ≥ 1} = 1.

Here is an even more extreme example:

xn =

{

1, if n = 1,
0, if n ≥ 2.

Again 0 = lim
n→∞

xn = lim sup
n→∞

xn, but sup{xn ∶ n ≥ 1} = 1.
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5. Give an example of a sequence {xn}∞n=1 having the properties that xn > 0 for every natural

number n, and the series
∞
∑

n=1
xn converges, and limn→∞

xn+1
xn

= 1. (In other words, the ratio test

fails to prove convergence of the series, but the series does converge nonetheless.)

Solution. If xn =
1
n2
, then the series

∞
∑

n=1
xn converges (being a p-series for which p > 1),

and
lim
n→∞

xn+1
xn

= lim
n→∞

n2

(n + 1)2
= lim

n→∞

1
(

1 + 1
n

)2
= 1.

There are other examples, but this one is the most popular.

Part Γ: Proof

6. Find a positive number � having the property that
|

|

|

|

1
x
− 1
2
|

|

|

|

< 1
9
whenever |x − 2| < �.

Explain why your � works.

Solution. Remark. To show that lim
x→2

1
x
= 1
2
requires finding, for each positive ", a corre-

sponding positive � having the property that
|

|

|

|

1
x
− 1
2
|

|

|

|

< " whenever 0 < |x − 2| < �. This
problem, however, asks merely for a � corresponding to one particular value of ", namely
" equal to 1

9
.

There is more than one correct answer. Indeed, if a certain value of � works, then so does
any smaller positive number. Notice too that x cannot be allowed to become 0 (because
then 1∕x is undefined), so � certainly should be less than 2.
Method 1: two-step. If � is chosen to be a number smaller than 1, then the restriction that
|x − 2| < � implies, in particular, that x > 1. Therefore

|

|

|

|

1
x
− 1
2
|

|

|

|

=
|

|

|

|

2 − x
2x

|

|

|

|

≤
|

|

|

|

2 − x
2

|

|

|

|

.

The upper bound on the right-hand side will be less than 1∕9 if |x − 2| < 2∕9. Since 2∕9
is less than 1, the value 2∕9 is a valid choice for �.
Method 2: exact solution. If x ≥ 2, then 1∕x ≤ 1∕2, so

|

|

|

|

1
x
− 1
2
|

|

|

|

= 1
2
− 1
x
.
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Now
1
2
− 1
x
< 1
9

⇐⇒
7
18

< 1
x

⇐⇒ x < 18
7

⇐⇒ x − 2 < 4
7
,

so when x ≥ 2, the needed restriction is that |x−2| < 4∕7. On the other hand, if 0 < x < 2,
then 1∕x > 1∕2, so

|

|

|

|

1
x
− 1
2
|

|

|

|

= 1
x
− 1
2
.

Now
1
x
− 1
2
< 1
9

⇐⇒
1
x
< 11
18

⇐⇒ −x < −18
11

⇐⇒ 2 − x < 4
11
,

so when x < 2, the needed restriction is that |x − 2| < 4∕11. Accordingly, if � is taken
equal to 4∕11 (the minimum of 4∕7 and 4∕11), then

|

|

|

|

1
x
− 1
2
|

|

|

|

< 1
9

when |x − 2| < �,

whether x ≥ 2 or x < 2. And 4∕11 is the largest possible value of � with this property.
Remark. You could shorten Method 2 by observing that the slope of the graph of the
function 1∕x has decreasing magnitude when x increases. Therefore the worst case occurs
when x < 2, so it was not really necessary to compute the first case in Method 2.
Method 3: guess and check. Since the slope of the graph has small magnitude near the
point where x = 2, a reasonable guess is that taking � equal to 1∕9 should work. Instead of
checking the inequality for every point x in the interval (2 − 1

9
, 2 + 1

9
), it suffices to check

the endpoints, since the function 1∕x is monotonic. Now

|

|

|

|

|

|

1
2 + 1

9

− 1
2

|

|

|

|

|

|

=
|

|

|

|

9
19
− 1
2
|

|

|

|

= 1
38

< 1
9
,

and
|

|

|

|

|

|

1
2 − 1

9

− 1
2

|

|

|

|

|

|

=
|

|

|

|

9
17
− 1
2
|

|

|

|

= 1
34

< 1
9
.

Thus taking � equal to 1∕9 does indeed work.

Part Δ: Optional Extra Credit Problem

The capital Greek letter Σ (Sigma) traditionally denotes a Sum, and the capital Greek letterΠ (Pi)

similarly denotes a Product. A plausible meaning to attach to the notation
∞
∏

n=1
an is limN→∞

N
∏

n=1
an,
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that is, the limit of the sequence of partial products. If this limit exists, then the infinite product
can be said to converge.

Does the infinite product
∞
∏

n=1

(

1 + 1
2n
)

converge? Explain why or why not.

Solution. Remark. The standard definition of convergence of an infinite product is actually a
bit more involved that what is stated in the problem, because 0 is a special number with respect
to multiplication. If a1 were equal to 0, for example, then every partial product would be equal
to 0, whatever the values of a2, a3, . . . . But the notion of convergence ought to depend only on

the behavior of an when n is large. Whether or not
∞
∏

n=1
an converges ought not to depend on the

value of a1 or even on the values of finitely many terms.
The usual definition of convergence of an infinite product therefore requires that first of all,

at most a finite number of terms can be equal to 0; secondly, when these terms are deleted, the
partial products of the remaining terms have a limit; and thirdly, this limit is not equal to 0. The
reason for the third condition is to maintain the natural property that a product is equal to 0 if and
only if one of the terms is equal to 0.
In the problem at hand, each term in the product is larger than 1, so the preceding subtleties do

not arise. Moreover, since each term is larger than 1, the partial products form a strictly increasing
sequence. Since a bounded monotonic sequence converges, all that needs to be checked to prove
convergence of this infinite product is that the partial products remain bounded above. Here are
three ways to verify that boundedness.

Method 1. The graph below from elementary calculus shows that 1 + x ≤ ex for every real
number x. Moreover, strict inequality holds when x ≠ 0. The key features of the graph are
that the slope of the exponential function at the origin is equal to 1, and the exponential graph is
convex (“concave up”). Therefore the graph of ex lies above the tangent line passing through the
point (0, 1).

x

y y = 1 + x
y = ex

The deduction is that 1 + 1
2n
< e1∕2n for each natural number n. Consequently,

N
∏

n=1

(

1 + 1
2n
)

<
N
∏

n=1
e1∕2n = exp

( N
∑

n=1

1
2n

)

.
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Now the right-hand side is bounded above by e1, since the geometric series
∞
∑

n=1

1
2n

converges to

the sum 1. Thus the partial products are indeed bounded above, as required.
Method 2. The geometric average of a collection of positive numbers is less than or equal to

the arithmetic average, that is,
( N
∏

n=1
bn

)1∕N

≤ 1
N

N
∑

n=1
bn.

The reason is that when a collection of numbers has a fixed sum, the product of the numbers is
maximized when the numbers are all equal to each other (in which case the geometric mean and
the arithmetic mean agree).

Apply this principle when bn = 1 +
1
2n

to deduce that

[ N
∏

n=1

(

1 + 1
2n
)

]1∕N

≤ 1
N

N
∑

n=1

(

1 + 1
2n
)

= 1 + 1
N

N
∑

n=1

1
2n
< 1 + 1

N
.

Therefore
N
∏

n=1

(

1 + 1
2n
)

<
(

1 + 1
N

)N
.

The expression on the right-hand side increases to the limit e whenN increases, so e is an upper
bound for the partial products.

Method 3. This method is longer than the two preceding ones but has the advantage of using
only elementary tools.

Convergence is unaffected by the first few terms in the product, so demonstrating boundedness

of the partial product
N
∏

n=4

(

1 + 1
2n
)

will do. The reason for discarding the initial terms of the

product is that 1
2n

≤ 1
n2

when n ≥ 4.

(Proof by induction: The basis step is the observation that 1
24
= 1
42
. For the induction step,

suppose n is a natural number (at least 4) for which 1
2n

≤ 1
n2
. Then 1

2n+1
≤ 1
2n2

. What remains

to show is that 1
2n2

≤ 1
(n + 1)2

, equivalently that (n + 1)2 ≤ 2n2, or that 2n + 1 ≤ n2. But n ≥ 4,

so n2 ≥ 4n = 2n + 2n > 2n + 1, as required.)

Accordingly, proving an upper bound for the partial product
N
∏

n=4

(

1 + 1
n2
)

will suffice. First

consider a different but related problem of convergence of
∞
∏

n=4

(

1 − 1
n2
)

. (Why this new problem
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is relevant will become apparent soon.) Observe that

1 − 1
n2
= n2 − 1

n2
=
(n − 1)(n + 1)

n2
.

Therefore
N
∏

n=4

(

1 − 1
n2
)

= 3 ⋅ 5
42

⋅
4 ⋅ 6
52

⋅
5 ⋅ 7
62

⋯
(N − 1)(N + 1)

N2
= 3
4
⋅
N + 1
N

by interior cancellation. Consequently, the indicated sequence of partial products decreases to
the limit 3

4
asN increases.

Next observe that

N
∏

n=4

(

1 + 1
n2
)

=
N
∏

n=4

(

1 + 1
n2
)

⋅

N
∏

n=4

(

1 − 1
n2
)

N
∏

n=4

(

1 − 1
n2
)

=

N
∏

n=4

(

1 − 1
n4
)

N
∏

n=4

(

1 − 1
n2
)

<

N
∏

n=4

(

1 − 1
n4
)

3
4

.

Each term in the product in the numerator on the right-hand side is a positive number less than 1,
so the whole numerator is less than 1. Thus

N
∏

n=4

(

1 + 1
n2
)

< 4
3
,

so the required upper bound on the partial products has been established.

March 28, 2018 Page 6 of 6 Dr. Boas


