Examination 2

Instructions: Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

1. For each part, give an example of a subset of \mathbb{R} satisfying the specified property.
a) An unbounded open set whose complement is unbounded too.

Solution. One example is $\mathbb{R} \backslash \mathbb{Z}$, the complement of the set of integers. This set consists of a union of open intervals, hence is open; and the set contains arbitrarily large numbers, hence is unbounded. The complementary set is the set of integers, evidently unbounded too.
b) A non-empty compact set having empty interior.

Solution. The simplest example is a singleton set, such as $\{4\}$. This set is closed and bounded and contains no intervals, hence is compact with empty interior.
2. Suppose $f:(0,1) \rightarrow \mathbb{R}$ is defined as follows:

$$
f(x)=\sqrt{x}, \quad 0<x<1
$$

(You know from Section 2.8 that every positive real number has a unique positive square root, so f is well defined.) Prove the unsurprising fact that

$$
\lim _{x \rightarrow 0} f(x)=0
$$

Solution. Fix a positive ε, and set δ equal to ε^{2}. If x lies in the interval $(0,1)$, and $|x-0|<\delta$, then $|f(x)-0|=\sqrt{x}<\sqrt{\delta}=\varepsilon$. Thus the $\varepsilon-\delta$ definition of limit is satisfied.

An alternative argument could be to say that on the larger domain $[0,1]$, the function x^{2} is certainly continuous, for the identity function x is continuous, and the product of two continuous functions is continuous. And x^{2} is a strictly monotonic bijection of the interval $[0,1]$ onto itself. The theorem about inverse functions on intervals (stated below in the extra-credit problem) implies that the inverse function \sqrt{x} is continuous on the interval $[0,1]$. Continuity of a function f on the closed interval implies that $\lim _{x \rightarrow 0} f(x)=f(0)$. Taking f to be the square-root function gives the required conclusion.
3. Give an example of a function $f:(0,1) \rightarrow \mathbb{R}$ that is continuous at every point of the interval $(0,1)$ but is not uniformly continuous on this interval. Explain why your example works.

Examination 2

Solution. Notice that if f extends to be a continuous function on the compact interval $[0,1]$, then a theorem implies that f is uniformly continuous on the interval $[0,1]$, hence also on the smaller interval $(0,1)$. Therefore the required example must fail to extend continuously to one of the endpoints. Here are two examples.

1. Suppose $f(x)=1 / x$. Being the reciprocal of a continuous function that is never equal to zero, the function f is continuous at each point of the domain $(0,1)$.

To see that f is not uniformly continuous on the interval, observe that

$$
|f(x)-f(y)|=\left|\frac{1}{x}-\frac{1}{y}\right|=\frac{|x-y|}{x y} \geq \frac{|x-y|}{x}
$$

when x and y are points of the interval $(0,1)$. Think of x as a fixed base point. If a positive target ε is specified, then the property that $|f(x)-f(y)|<\varepsilon$ can hold only if $|x-y|<\varepsilon x$. Therefore εx is the largest possible δ that can work in the definition of continuity at x. Since the value of εx becomes arbitrarily close to 0 when x approaches 0 , there cannot be a single positive δ that works for every x simultaneously.
2. Another example is $\sin (\pi / x)$. Being the composition of two continuous functions, this function is continuous at each point of the interval $(0,1)$. And the function even has bounded image.

Now this function takes the value 0 when $x=1 / n$ (where $n=2,3, \ldots$) and takes the value 1 when $x=2 /(4 n+1)$. Thus there are values of x arbitrarily close together at which the values of the function differ by 1: the definition of uniform continuity is violated when $\varepsilon=1 / 2$.
4. State one of the following theorems (your choice):
a) the intermediate-value theorem, or
b) the extreme-value theorem, or
c) the Heine-Borel covering theorem.

Solution. The intermediate-value theorem is Theorem 6.1 .2 on page 99 . The extremevalue theorem is Corollary 6.3.2 on page 102. The Heine-Borel covering theorem is a combination of Definition 4.5.5 and Theorem 4.5.6 on page 77.
5. Suppose $f:(0,1) \rightarrow \mathbb{R}$, and let S denote the set $\{x \in(0,1): f$ is continuous at $x\}$. Must S be an open set? Supply a proof or a counterexample, as appropriate.

Solution. If the function f has only a finite number of discontinuities, then the set S is the complement of a finite set, hence is open. To find a counterexample requires considering a function that has infinitely many points of discontinuity. Here are three examples.

Examination 2

1. Define $f(x)$ to be equal to zero unless x has the form $\frac{1}{2}+\frac{1}{10^{n}}$ for some positive integer n, and set $f\left(\frac{1}{2}+\frac{1}{10^{n}}\right)$ equal to $\frac{1}{10^{n}}$. Thus $f(0.51)=0.01$, and $f(0.501)=0.001$, and so on. Evidently f is discontinuous at each point $\frac{1}{2}+\frac{1}{10^{n}}$, since $f(x)$ takes the value 0 at values of x arbitrarily close to $\frac{1}{2}+\frac{1}{10^{n}}$. On the other hand, $\lim _{n \rightarrow \infty} \frac{1}{10^{n}}=0$, so f is continuous at the point $\frac{1}{2}$. Accordingly, the set S fails to be open, since $\frac{1}{2} \in S$, but S contains no interval around $\frac{1}{2}$.
2. Suppose

$$
f(x)= \begin{cases}x-\frac{1}{2}, & \text { if } x \text { is a rational number } \\ 0, & \text { if } x \text { is an irrational number }\end{cases}
$$

Since every real number c between 0 and 1 is a limit of a sequence of irrational numbers, the second clause implies that if $\lim _{x \rightarrow c} f(x)$ exists, then the limit must be 0 . On the other hand, the first clause implies that $\lim _{x \rightarrow c} f(x)$ can be 0 only if $c=1 / 2$. The upshot is that the set S of points of continuity is the singleton set $\{1 / 2\}$, evidently not an open set.
3. This example is similar to one from class on March 21. Suppose

$$
f(x)= \begin{cases}0, & \text { if } x \text { is an irrational number } \\ \frac{1}{n}, & \text { if } x=m / n, \text { the integers } m \text { and } n \text { having no common factor. }\end{cases}
$$

The irrational numbers are dense, so f takes the value 0 in every neighborhood of every rational number. But the value of f at a rational number is not 0 , so f is discontinuous at every rational number. On the other hand, when a sequence of rational numbers converges to an irrational limit, the denominators of the rational numbers must blow up, so the value of f tends to 0 . Therefore f is continuous at every irrational number. Thus S is the set of irrational numbers between 0 and 1, evidently not an open set, for S contains no intervals.
Remark. Although the set S defined in the problem is not necessarily an open set, the set S is always the intersection of a sequence of open sets.
6. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are two continuous functions. Prove that if $f(r)=g(r)$ for every rational number r, then $f(x)=g(x)$ for every real number x.

Solution. The rational numbers are dense, so for an arbitrary real number x there exists a sequence $\left(r_{n}\right)$ of rational numbers such that $\lim _{n \rightarrow \infty} r_{n}=x$. Continuous functions preserve convergence of sequences, so

$$
f(x)=\lim _{n \rightarrow \infty} f\left(r_{n}\right) \stackrel{\text { by hypothesis }}{=} \lim _{n \rightarrow \infty} g\left(r_{n}\right)=g(x) .
$$

Thus $f(x)=g(x)$ for an arbitrary real number x, as required.

Examination 2

Extra Credit Problem. A theorem about inverse functions says that if I and J are intervals in \mathbb{R}, and a function f is a continuous bijection from I onto J, then the inverse function f^{-1} is automatically continuous on J.

Your task is to construct an example of two subsets A and B of \mathbb{R} and a bijective continuous function f from A onto B such that f^{-1} is discontinuous at some point of B. (In view of the theorem, your sets A and B cannot both be intervals.)

Solution. Here are two examples.

1. Let A be the union of the intervals $[0,1)$ and $[2,3)$, let B be the interval $[0,2)$, and define a function f as follows:

$$
f(x)= \begin{cases}x, & \text { if } 0 \leq x<1 \\ x-1, & \text { if } 2 \leq x<3\end{cases}
$$

Evidently f is a continuous, strictly increasing function that maps the disconnected domain A onto the image B. The inverse function f^{-1} is discontinuous at the point 1 in B, for points slightly to the left of 1 in B map to points close to 1 in A, while points slightly to the right of 1 in B map to points close to 2 in A. Even without putting your finger on the point 1 , you could infer from the intermediate-value theorem that f^{-1} must have a point of discontinuity.
2. Let A be \mathbb{Z}, the set of integers. Since this set has no limit point, every function with domain A is continuous by default. Define an injective function f as follows:

$$
f(n)= \begin{cases}0, & \text { if } n=0 \\ \frac{1}{n}, & \text { if } n \neq 0\end{cases}
$$

Let B be the image set, $\{0\} \cup\left\{ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \ldots\right\}$. Then $\left(\frac{1}{n}\right)_{n=1}^{\infty}$ is a sequence in B that converges to the point 0 in B, and the inverse function f^{-1} maps this convergent sequence to the divergent sequence $(n)_{n=1}^{\infty}$, so f^{-1} is not continuous at 0 .

