Final Examination

Part A: Sentence Completion

Your answer to each of problems 1-3 should be a complete sentence that starts as indicated.

1. The least-upper-bound property (or completeness property) of the real numbers says that if S is a non-empty set, and S is bounded above, then

Solution. The least-upper-bound property (or completeness property) of the real numbers says that if S is a non-empty set, and S is bounded above, then S has a least upper bound (a supremum).
2. The mean-value theorem states that if a function f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), then there exists
[Warning: Do not confuse the mean-value theorem with the intermediate-value theorem!]

Solution. The mean-value theorem states that if a function f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), then there exists a point c in the interval (a, b) such that $f(b)-f(a)=f^{\prime}(c)(b-a)$, or $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$.
3. A function $f:(a, b) \rightarrow \mathbb{R}$ is said to be uniformly continuous if for every positive $\varepsilon \ldots$

Solution. A function $f:(a, b) \rightarrow \mathbb{R}$ is said to be uniformly continuous if for every positive ε, there exists a positive δ such that $|f(x)-f(y)|<\varepsilon$ whenever x and y are points in the domain of f for which $|x-y|<\delta$. (The uniformity consists in the value of δ being independent of the points x and y.)

Part B: Examples

Your task in problems $4-5$ is to exhibit a concrete example satisfying the indicated property. You should provide a brief explanation of why your example works.
4. Give an example of an integrable function $f:[-1,1] \rightarrow \mathbb{R}$ that is not differentiable at 0 .

Solution. The most popular example for $f(x)$ is $|x|$, the absolute-value function. This function is continuous on the interval $[-1,1]$, hence integrable (by Cauchy's theorem), but the function is not differentiable when $x=0$ (since the right-hand derivative equals 1 , but the left-hand derivative equals -1 .)
Another popular example is the following function that is defined piecewise:

$$
\begin{cases}0, & \text { when }-1 \leq x \leq 0 \\ 1, & \text { when } 0<x \leq 1\end{cases}
$$

Final Examination

Since this bounded function has only one point of discontinuity, the function is integrable (by Theorem 5.2.8). Being discontinuous when $x=0$, the function is not differentiable (invoke the contrapositive of problem 7 below).
5. Give an example of a sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ such that

$$
\limsup _{n \rightarrow \infty} \sum_{k=1}^{n} x_{k} \quad \text { and } \quad \liminf _{n \rightarrow \infty} \sum_{k=1}^{n} x_{k}
$$

are finite and unequal. In other words, give an example of a divergent series that has bounded partial sums.

Solution. The most popular example is to set x_{k} equal to $(-1)^{k}$. The partial sum $\sum_{k=1}^{n}(-1)^{k}$ is equal to -1 for odd values of n and is equal to 0 for even values of n, so $\limsup _{n \rightarrow \infty} \sum_{k=1}^{n} x_{k}=0$ and $\liminf _{n \rightarrow \infty} \sum_{k=1}^{n} x_{k}=-1$.

Part Г: Proof

Your proofs should be written in complete sentences, each step being justified. You may invoke theorems from the course if you indicate what the cited theorems say.
6. Suppose $x_{n}=\cos \left(e^{n}\right)$. Prove that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence.

Solution. Since the values of the cosine function lie between -1 and 1 , the sequence is bounded. By the Bolzano-Weierstrass theorem, there is a convergent subsequence. [The Bolzano-Weierstrass theorem states that every bounded sequence of real numbers has a convergent subsequence.]
7. Suppose a function f is differentiable at every point of the interval $(0,1)$. A standard proposition states that f must then be continuous at every point of the interval $(0,1)$. Prove this proposition.

Solution. Method 1. The hypothesis implies that for an arbitrary point c in the interval,

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \quad \text { exists and equals } f^{\prime}(c)
$$

Evidently $\lim _{x \rightarrow c}(x-c)=0$. A standard theorem says that if two functions have limits, then so does the product function, and the limit of the product equals the product of the limits. Therefore

$$
\lim _{x \rightarrow c}(f(x)-f(c))=\left(\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}\right) \cdot \lim _{x \rightarrow c}(x-c)=f^{\prime}(c) \cdot 0=0 .
$$

Final Examination

In other words, $\lim _{x \rightarrow c} f(x)$ exists and equals $f(c)$, which is one definition of continuity. Since the point c is arbitrary, the desired conclusion has been established.
Method 2. An alternative definition of differentiability of f at c states that there exists a function F, continuous at c, such that $f(x)=F(x)(x-c)+f(c)$. Thus $f(x)$ is the product of the two continuous functions $F(x)$ and $x-c$, plus a constant; so f is continuous at c.
Method 3. Fix a point c in the interval $(0,1)$. Apply the definition of the derivative as a limit, with ε equal to 1 , to obtain a positive number δ such that

$$
\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right|<1 \quad \text { when } \quad 0<|x-c|<\delta \quad \text { and } \quad x \in(0,1) .
$$

Equivalently, $\left|f(x)-f(c)-f^{\prime}(c)(x-c)\right|<|x-c|$ when $0<|x-c|<\delta$ and $x \in(0,1)$. The triangle inequality implies that $|f(x)-f(c)|<\left(\left|f^{\prime}(c)\right|+1\right)|x-c|$ when $0<|x-c|<\delta$ and $x \in(0,1)$. The squeeze theorem now implies that $\lim _{x \rightarrow c} f(x)=f(c)$, so f is continuous at an arbitrary point c.
Method 4. Argue by contradiction. Suppose there is a point c at which f is not continuous. In other words, suppose it is not the case that $\lim _{x \rightarrow c} f(x)=f(c)$. Then there exists a positive ε and a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converging to c such that $\left|f\left(x_{n}\right)-f(c)\right| \geq \varepsilon$. Consequently,

$$
\left|\frac{f\left(x_{n}\right)-f(c)}{x_{n}-c}\right| \geq \frac{\varepsilon}{\left|x_{n}-c\right|} .
$$

When $x_{n} \rightarrow c$, the fraction on the right-hand side grows without bound, so the fraction on the left-hand side cannot have a finite limit. This conclusion contradicts the hypothesis that f is differentiable at c.
Non-method. You learned a proposition stating that a function whose derivative is bounded must be a Lipschitz continuous function, hence a continuous function (and even stronger, a uniformly continuous function). This proposition is not applicable here, for a differentiable function need not have a bounded derivative. For example, if $f(x)=2 \sqrt{x}$, then f is differentiable at each point of the open interval $(0,1)$, but the derivative equals $1 / \sqrt{x}$, which is not bounded on the interval.

Part Δ : Optional Extra Credit Problem

A sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of functions with common domain S is said to converge pointwise to a limit function f when $\lim _{n \rightarrow \infty} f_{n}(x)$ exists for each x in S and equals $f(x)$. Taking the domain S to be the closed interval [0,1], give an example of a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of continuous functions that converges pointwise to a discontinuous limit function f.

Final Examination

Solution. One example is to set $f_{n}(x)$ equal to x^{n}. The pointwise limit $f(x)$ is then equal to 0 when $0 \leq x<1$ (a standard limit contained in Proposition 2.2.11) but is equal to 1 when $x=1$. Evidently the limit function f is discontinuous at the point 1.

Here is another example:

$$
f_{n}(x)= \begin{cases}1-n x, & \text { when } 0 \leq x \leq 1 / n \\ 0, & \text { when } 1 / n<x \leq 1\end{cases}
$$

This function is continuous, for the graph consists of two line segments that join at the point where $x=1 / n$. The limit function $f(x)$ equals 0 when $0<x \leq 1$ and equals 1 when $x=0$, hence is discontinuous at 0 .

