- 1. Let R denote the region in the first quadrant of the x-y plane bounded by the line y = x and the parabola $y = x^2$. Compute
 - (a) the area of R,
 - (b) the center of gravity of R.
- 2. Rewrite $\int_{-1}^{2} dx \int_{x}^{x^{3}} f(x, y) dy$ as an iterated integral in the other order.
- 3. Let R denote the closed unit square: the region in the first quadrant of the x-y plane defined by the inequalities $0 \le x \le 1$ and $0 \le y \le 1$. Give a concrete example
 - (a) of a function f that is not uniformly continuous on R but that is Riemann integrable on R,
 - (b) of a function f that is defined everywhere on R but that is not Riemann integrable on R.
- 4. Compute the surface area of the piece of the unit sphere $x^2 + y^2 + z^2 = 1$ on which all three coordinates x, y, and z are positive and in addition x < 1/2.
- 5. Prove from first principles that if f and g are continuous functions on a compact region R, and if $f(x, y) \leq g(x, y)$ for all points (x, y) in R, then $\iint_R f(x, y) dS \leq \iint_R g(x, y) dS$.
- 6. Model the surface of a pumpkin by the equation $r = 1 + a(\sin \varphi) |\cos 8\theta|$ in spherical coordinates, where a is a small positive number. As usual, r is the distance from the origin, the angle θ is the polar angle, and the angle φ is the co-latitude (the angle measured down from the positive z-axis). The figure illustrates the case a = 1/10.

Set up an integral that expresses the volume of the pumpkin. Do not evaluate the integral.