Exercise on differentiability

Recall that a function f on a domain D (a connected open set) in \mathbb{R}^{2} is

- continuous (notation: $f \in C$) if for every point (a, b) in D we have $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$;
- differentiable if for every point (a, b) in D there exist functions φ and ψ with the property $\lim _{(x, y) \rightarrow(a, b)} \varphi(x, y)=0=\lim _{(x, y) \rightarrow(a, b)} \psi(x, y)$ such that we have the linear approximation formula

$$
\begin{aligned}
f(x, y)-f(a, b)=\frac{\partial f}{\partial x}(a, b)(x-a) & +\frac{\partial f}{\partial y}(a, b)(y-b) \\
& +\varphi(x, y)(x-a)+\psi(x, y)(y-b)
\end{aligned}
$$

- continuously differentiable (notation: $f \in C^{1}$) if the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are continuous at all points of D.

Discuss each of the following examples (with $D=\mathbb{R}^{2}$) in terms of the above concepts.
A. $f(x, y)= \begin{cases}\frac{x^{3}+y^{3}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}$
B. $g(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}$
C. $h(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{x^{2}+y^{2}}\right), & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}$

