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§1 §2 §3 style total

Please print your name: Answer Key

1 True/false

Circle the correct answer; no explanation is required. Each problem in this
section counts 5 points.

1. The binary operation ∗ defined on the real numbers R by the rule
x ∗ y = sin(x + y) for all x and y is commutative but not associative.
True False

Solution. True. The operation is commutative because sin(x + y) =
sin(y + x) for all x and y. The operation is not associative because
(x ∗ y) ∗ z = sin(x + y) ∗ z = sin(sin(x + y) + z), but x ∗ (y ∗ z) =
sin(x+(y ∗ z)) = sin(x+sin(y + z)), and these two expressions are not
identically equal. For instance, when x = π

2
, y = π

2
, and z = 0, the

first expression becomes sin(sin(π)), which equals 0; and the second
expression becomes sin(π

2
+ 1), which does not equal 0.

2. The set of complex numbers z such that z4 = 16 is a group under
multiplication. True False

Solution. False: 24 = 16 and (−2)4 = 16, but (2× (−2))4 = 256 6= 16.
The set is not closed under multiplication, so the set does not form a
group under multiplication. What is true is that the set of complex
numbers z such that z4 = 1 is a group under multiplication.

3. Every finite group is cyclic. True False

Solution. False: the Klein 4-group is an example of a finite non-cyclic
group.

4. Consider the following relation defined on the set of current Texas A&M
students:

A is related to B if A and B are enrolled in the same math-
ematics class.
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This relation is an equivalence relation. True False

Solution. False. The relation is not reflexive, because if student A is
not enrolled in any mathematics class, then A is not related to A. Also,
the relation is not transitive: A and B may be enrolled in Math 415,
while B and C may be enrolled in Math 409, but A and C need not be
enrolled in a common mathematics class.

5. The two tables below are the group tables of two groups G and H .

G e a b c d f

e e a b c d f

a a b c d f e

b b c d f e a

c c d f e a b

d d f e a b c

f f e a b c d

H e a b c d f

e e a b c d f

a a e d f b c

b b f e d c a

c c d f e a b

d d c a b f e

f f b c a e d

The groups G and H are isomorphic groups. True False

Solution. False. In the group G, there are exactly two elements whose
square equals the identity, while in the group H , there are four elements
whose square equals the identity. The number of elements whose square
equals the identity is a structural property that must be preserved by
an isomorphism.

2 Short answer

Fill in the blanks; no explanation is required. Each problem in this section
counts 5 points.

6. If +12 denotes addition modulo 12, then 11 +12 8 = 7.

7. The greatest common divisor of 42 and 60 equals 6.

8. How many subgroups does the cyclic group Z6 have? (Include in your
count both the improper subgroup and the trivial subgroup.)
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Solution. There are 4 different subgroups of Z6.

Subgroups of cyclic groups are cyclic, and here is a complete list of
cyclic subgroups of Z6.

〈0〉 is the trivial subgroup consisting of the single element 0.

〈1〉 is the improper subgroup, Z6 itself.

〈2〉 is a subgroup of order 3 consisting of the elements 0, 2, and 4.

〈3〉 is a subgroup of order 2 consisting of the elements 0 and 3.

〈4〉 is the same subgroup as 〈2〉.

〈5〉 is the same subgroup as 〈1〉, namely the improper subgroup.

9. The subset {4, 6} of the cyclic group Z12 generates a subgroup of Z12

of order 6.

Solution. The subgroup generated by 4 and 6 is the same as the cyclic
subgroup generated by 2 (since gcd(4, 6) = 2). Therefore the subgroup
has order 6.

10. The partially completed table below represents a binary operation ∗
on the set {a, b, c, d}. Fill in the table to make the operation ∗ both
commutative and associative. (There is a unique solution.)

∗ a b c d

a

b b a b

c a c c

d b c d

Solution. Observe that a = b ∗ c. Therefore b ∗ a = b ∗ (b ∗ c). If the
binary operation is associative, then b ∗ (b ∗ c) = (b ∗ b) ∗ c. From the
table, (b ∗ b) ∗ c = b ∗ c = a. Thus b ∗ a = a. If the binary operation is
commutative, then also a ∗ b = a.

A similar analysis shows that a ∗ c = (b ∗ c) ∗ c = b ∗ (c ∗ c) = b ∗ c = a,
and by commutativity c ∗ a = a as well.
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Moreover, a ∗ d = (b ∗ c) ∗ d = b ∗ (c ∗ d) = b ∗ c = a, and d ∗ a = a too.

Finally, a ∗ a = a ∗ (b ∗ c) = (a ∗ b) ∗ c. Since it has already been
determined that a∗ b = a, the expression (a∗ b)∗ c reduces to a∗ c, and
this is known already to equal a. Thus a ∗ a = a.

In conclusion, all the missing entries of the table must be filled in with
the letter a if the operation is to be both associative and commutative.

3 Essay questions

In the following problems, you must give an explanation. (Continue on the
back if you need more space.) Each problem counts 15 points. In addition,
this section as a whole carries 5 style points based on how well your solutions
are written.

11. Let G be an abelian group (written multiplicatively). Let H be the
subset of G consisting of all squares of elements of G: in symbols,
H = { x2 | x ∈ G }. Prove that H is a subgroup of G.

Solution. One has to check three properties: (i) the subset H is closed
under the group operation of G; (ii) the identity element e of G is an
element of H ; and (iii) the inverse of every element of H is again an
element of H .

To check the first property, consider two arbitrary elements a and b

of H . We need to show that ab ∈ H . By the definition of H , there
exist elements x and y of G such that a = x2 and b = y2. Then ab =
x2y2 = xxyy. Because G is an abelian group, xxyy = xyxy = (xy)2.
Thus ab is equal to the square of the element xy of G, so ab ∈ H by
the defining property of H .

The identity element e of G has the property that ex = x for every
element x of G. In particular, ee = e. Thus e is a square (namely e2),
so e ∈ H by the defining property of H . Thus property (ii) holds.

To check property (iii), consider an arbitrary element a of H . We need
to show that a−1 ∈ H . By the definition of H , there exists an element x

in G such that a = xx. Now x−1x−1a = x−1x−1xx = x−1ex = e, so
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a−1 = x−1x−1. In other words, a−1 is a square (namely (x−1)2), so
a−1 ∈ H by the defining property of H .

Having verified all three properties (i), (ii), and (iii), one concludes that
H is a subgroup of G.

12. The real numbers R form a group under addition; the positive real
numbers R

+ form a group under multiplication. Show that the map ϕ

defined by ϕ(x) = 2x gives an isomorphism between 〈R, +〉 and 〈R+, ·〉.

Solution. One has to check three properties: (i) the map ϕ is one-to-
one; (ii) the map ϕ is onto; and (iii) the map ϕ is a homomorphism,
that is, ϕ(x + y) = ϕ(x) · ϕ(y) for all x and y.

Property (i) holds because the function 2x is a strictly increasing func-
tion: if x < y, then 2x < 2y. Consequently, 2x = 2y only if x = y.

Property (ii) holds because the function 2x has an inverse function,
namely the base 2 logarithm. Thus if y is an arbitrary element of R

+,
there is an element x of R such that 2x = y: namely x = log2 y.

To check property (iii), observe that ϕ(x+y) = 2x+y, while ϕ(x)·ϕ(y) =
2x · 2y. The two expressions are indeed equal by the laws of exponents.
Thus ϕ is a homomorphism.

Having verified all three properties (i), (ii), and (iii), one concludes that
ϕ is an isomorphism.

13. Let S be a non-empty set, and let P(S) denote the power set of S:
namely, the collection of all subsets of S. (In particular, the empty
set ∅ is an element of the power set P(S), and so is the whole set S

itself.) Equip the power set P(S) with the binary operation of union.
(If A and B are subsets of S, then so is their union A ∪ B.)

Is 〈P(S),∪〉 a group? Explain why or why not.

Solution. Method 1 (applying a theorem). If 〈P(S),∪〉 were a group,
then there would be a left cancellation law. Now S ∪ S = S ∪∅ (since
both sides of the equation are equal to S), so cancelling on the left
implies that S = ∅, contrary to the hypothesis. This contradiction
shows that 〈P(S),∪〉 cannot be a group after all.
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Method 2 (applying the definition). A group should have an asso-
ciative binary operation, there should be an identity element for the
operation, and each element should have an inverse element. The third
property is lacking here, so 〈P(S),∪〉 is not a group. Here are more
details.

Taking unions is an associative operation: A∪ (B ∪C) = (A∪B)∪C.
(Both expressions represent the set whose elements belong to at least
one of the sets A, B, and C.)

Since ∅ ∪A = A = A ∪ ∅ for every set A, the element ∅ of the power
set is an identity element for the operation of taking the union.

Inverses are missing, however. Indeed, for A and B to be inverse ele-
ments in 〈P(S),∪〉 means that A ∪ B = ∅ (since we have previously
identified ∅ as the identity element for ∪). Because A and B both
are subsets of A ∪ B, the only way that A ∪ B can equal ∅ is for A

and B both to equal ∅. Thus the only element of 〈P(S),∪〉 that has
an inverse element is ∅.

Consequently, 〈P(S),∪〉 is a group only if 〈P(S),∪〉 is the trivial group
whose only element is ∅. By hypothesis, however, S is not the empty
set, so 〈P(S),∪〉 has at least one element besides ∅ (namely, S itself).

In summary, since 〈P(S),∪〉 has at least one element that does not
have an inverse element, 〈P(S),∪〉 is not a group.
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