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Please print your name: Answer Key

1 True/false

Circle the correct answer; no explanation is required. Each problem in this
section counts 5 points.

1. The rings Z15 and Z3 × Z5 are isomorphic. True False

Solution. True. This is a particular case of Example 18.15 on page 172
of the textbook.

2. The ring Z × Z is an integral domain. True False

Solution. False. Since (1, 0)(0, 1) = (0, 0), the ring has zero divisors.

3. When 614 is divided by 15, the remainder equals 1. True False

Solution. False. Notice that 15 is not prime, and moreover 15 and 6
have a common factor, so the theorems of Fermat and Euler do not
apply. Notice, however, that 62 = 36 ≡ 6 mod 15, so 614 ≡ 6 mod 15,
so the remainder when 614 is divided by 15 equals 6.

4. Q[x] is a field of quotients of Z[x]. True False

Solution. False. The ring Q[x] is not even a field.

5. The polynomial x3 + x2 + x + 1 is reducible over Q. True False

Solution. True. By inspection, −1 is a zero of the polynomial, so x+1
is a factor. In fact, x3 + x2 + x + 1 = (x + 1)(x2 + 1).
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2 Short answer

Fill in the blanks; no explanation is required. Each problem in this section
counts 5 points.

6. In the direct product ring Z5 × Z9, the product of the elements (2, 3)

and (3, 4) equals .

Solution. Since (2)(3) ≡ 1 mod 5 and (3)(4) ≡ 3 mod 9, we have
(2, 3)(3, 4) = (1, 3) in Z5 × Z9.

7. Solve the equation 5x = 2 in the field Z31. x =

Solution. Working in the integers modulo 31, multiply by −6 to get
−30x ≡ −12 mod 31 or x ≡ 19 mod 31. Thus x = 19 in Z31.

8. How many solutions does the equation 39x = 52 have in the ring Z130?

Solution. A corresponding problem in the integers is 39x = 52+130k
for some integer k, or equivalently 3x = 4 + 10k. Multiplying by 7 and
reducing mod 10 shows that the solutions in Z are the elements of
the congruence class 8 + 10Z. Exactly 13 of these elements correspond
to elements of Z130: namely, 8, 18, 28, . . . , 128. Thus there are 13
solutions in Z130.

One can also observe that gcd(39, 130) = 13, and 13 divides 52, so
Theorem 20.12 on page 187 applies.

9. How many zeroes does the quadratic polynomial 2x2 + 4 have in Z6?

Solution. One can simply test all six elements of Z6 to see that 1, 2,
4, and 5 are zeroes, while 0 and 3 are not. Thus there are four zeroes.

Notice that the number of zeroes exceeds the degree of the polynomial.
This does not contradict Corollary 23.5 on page 212 because Z6 is not a
field (indeed, Z6 is not even an integral domain). Unique factorization
fails in the polynomial ring Z6[x].

November 30, 2006 Page 2 of 5 Dr. Boas



Math 415 Examination 3

Modern Algebra I
Fall 2006

10. The two tables show the binary operations of addition and multiplica-
tion for an integral domain of order 4. Fill in the four blanks.

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 1

b b a 0

× 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a 1

b 0 b a

Solution. The addition table is a group table, so each row must con-
tain each group element exactly once. Hence the missing entry in the
bottom row must be 1, and the other missing entry must be 0.

By hypothesis, the multiplication operation is commutative, so the mul-
tiplication table must be symmetric. Therefore the missing entry in the
bottom row of the multiplication table is 1. A finite integral domain
is always a field (Theorem 19.11), so the part of the multiplication ta-
ble obtained by deleting all the 0 entries is a group table; hence the
remaining missing entry must be b. Another way to get that entry is
to use the associative law: bb = a, so aa = a(bb) = (ab)b = 1b = b.

3 Essay questions

In the following problems, you must give an explanation. (Continue on the
back if you need more space.) Each problem counts 15 points. In addition,
this section as a whole carries 5 style points based on how well your solutions
are written.

11. Suppose that R is a ring, and S is a non-empty subset of R that is closed
under both multiplication and subtraction. In other words, whenever
a ∈ S and b ∈ S, it follows that both ab ∈ S and a− b ∈ S. Show that
S is a subring of R.
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Solution. This is essentially exercise 48 on page 176 of the textbook.
Since S is closed under multiplication, all that needs to be checked
is that S is a group under addition, because the commutative law for
addition, the associative law for multiplication, and the distributive
law all follow from the corresponding laws in R.

We know that a subset of a group is a subgroup if it contains the
additive identity element, contains the additive inverse of each of its
elements, and is closed under addition (Theorem 5.14). Let’s check
each of those properties for S.

Since S is non-empty, there exists some element a in S. Then by
hypothesis, a − a ∈ S, that is, 0 ∈ S. Now if b is any element in S,
then by hypothesis 0 − b ∈ S, that is, the additive inverse of b belongs
to S. Finally, if a and b are any two elements of S, then a− (−b) ∈ S,
that is, a + b ∈ S. This verifies the three necessary properties, so S is
a subgroup of the additive group of R.

12. Suppose that R is a commutative ring, and S is a non-empty subset
of R that is closed under multiplication (that is, whenever a and b are
elements of S, then so is ab). Define a relation ∼ on the set R × S via

(r1, s1) ∼ (r2, s2) if s(r1s2 − r2s1) = 0 for some s in S.

Show that ∼ is an equivalence relation on R × S.

Solution. This problem is closely related to the construction of the
field of quotients in section 21 of the textbook. We need to check that
the relation ∼ is reflexive, symmetric, and transitive.

For reflexivity, observe that if r1 = r2 and s1 = s2, then s(r1s2−r2s1) =
s(r1s1−r1s1) = 0 for every element s in S (not just for some s). Hence
(r1, s1) ∼ (r1, s1) when r1 ∈ R and s1 ∈ S.

For symmetry, observe that if s(r1s2 − r2s1) = 0, then the additive
inverse s(r2s1 − r1s2) also equals 0. Hence if (r1, s1) ∼ (r2, s2), then
also (r2, s2) ∼ (r1, s1).

For transitivity, suppose that (r1, s1) ∼ (r2, s2) and (r2, s2) ∼ (r3, s3);
we need to deduce that (r1, s1) ∼ (r3, s3). The two given relations imply
the existence of elements s and s′ in S such that s(r1s2 − r2s1) = 0 and
s′(r2s3 − r3s2) = 0. Multiply the first equation by s3s

′ and the second

November 30, 2006 Page 4 of 5 Dr. Boas



Math 415 Examination 3

Modern Algebra I
Fall 2006

equation by s1s and add to get s2ss
′(r1s3−r3s1) = 0. Since the elements

s2, s, and s′ all belong to S, and S is closed under multiplication, the
element s2ss

′ belongs to S. Therefore the preceding equation implies
that indeed (r1, s1) ∼ (r3, s3).

13. If S is a subring of a ring R, then S is called an ideal if both rs ∈ S

and sr ∈ S whenever r ∈ R and s ∈ S. [Example: R = Z and S = 2Z.]
Show that the kernel of a ring homomorphism is always an ideal.

Solution. Let φ be a ring homomorphism from R to some ring. If s ∈

Ker(φ) (meaning that φ(s) = 0) and r ∈ R, then the homomorphism
property implies that φ(rs) = φ(r)φ(s) = φ(r)0 = 0 and φ(sr) =
φ(s)φ(r) = 0φ(r) = 0. Hence rs ∈ Ker(φ) and sr ∈ Ker(φ).

It remains to check that Ker(φ) is a subring of R. Since in the preceding
discussion the element r could, in particular, represent an arbitrary ele-
ment of S, it follows from what has already been proved that Ker(φ) is
closed under multiplication. Therefore we need only check that Ker(φ)
is an additive subgroup of the additive group of R. But if we simply
ignore the multiplicative structure, then φ is a group homomorphism
of the underlying additive groups, and we know from group theory that
the kernel of a group homomorphism is a subgroup (section 13).
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