$\S 1$	$\S 2$	$\S 3$	style	total

Modern Algebra I

Please print your name:
Answer Key

1 True/false

Circle the correct answer; no explanation is required. Each problem in this section counts 5 points.

1. Every group of order 6 is cyclic.

True False

Solution. False. The symmetric group S_{3} is not abelian and hence not cyclic.
2. Every element of the symmetric group S_{5} can be written as a product of disjoint transpositions. True False

Solution. False. The cycle $(1,2,3)$ cannot be written as a product of disjoint transpositions. (It can be written as the product $(1,3)(1,2)$, a product of non-disjoint transpositions.) What is true is that every element of the symmetric group can be written as a product of disjoint cycles.
3. Every subgroup of an abelian group is normal. True False

Solution. True. A subgroup is normal if its left cosets are the same as its right cosets; if the group operation is commutative, then there is no distinction between operating on the left and operating on the right.
4. If F is a field, then the polynomial ring $F[x]$ is an integral domain. True False

Solution. True. More generally, if R is an integral domain, then so is the polynomial ring $R[x]$.
5. The nonzero elements of a ring form a group under multiplication. True False

Modern Algebra I

Solution. False. The nonzero elements of a ring need not have multiplicative inverses (example: \mathbb{Z}), there need not be a multiplicative identity element (example: $2 \mathbb{Z}$), and the set of nonzero elements need not be closed under multiplication (example: \mathbb{Z}_{6}, where $(2)(3)=0$).

2 Short answer

Fill in the blanks; no explanation is required. Each problem in this section counts 5 points.
6. The order of the element $(2,3)$ in the group $\mathbb{Z}_{6} \times \mathbb{Z}_{8}$ equals \qquad

Solution. The order of the element 2 in \mathbb{Z}_{6} equals 3, the order of the element 3 in \mathbb{Z}_{8} equals 8 , and the order of the element $(2,3)$ in $\mathbb{Z}_{6} \times \mathbb{Z}_{8}$ equals $\operatorname{lcm}(3,8)$ or 24 .
7. The permutation $(1,2)(3,4,5,6)$ generates a cyclic subgroup H of the symmetric group S_{6}. How many cosets does the subgroup H have?

Solution. The given permutation generates a cyclic subgroup H of order 4. The cosets of H all have the same number of elements, and they partition the group S_{6}. Therefore the number of cosets is $6!/ 4$ or 180.
8. How many abelian groups of order 36 exist (up to isomorphism)? (Use the fundamental theorem of finite abelian groups.) \qquad
Solution. Since $36=2^{2} \times 3^{2}$, the possible groups (up to isomorphism) are $\mathbb{Z}_{4} \times \mathbb{Z}_{9}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{9}, \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$, and $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$. Thus there are 4 such groups.
9. How many group homomorphisms $\phi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{4}$ exist? (Don't forget to count the 0 homomorphism.)

Solution. The are 2 such homomorphisms. One way to see this is the following.

Modern Algebra I

Observe that $\phi(4)=\phi(1+1+1+1)=\phi(1)+\phi(1)+\phi(1)+\phi(1)=0$, since every element of \mathbb{Z}_{4} added to itself 4 times produces 0 in \mathbb{Z}_{4}. Therefore the kernel of ϕ contains the element 4 and hence the subgroup of \mathbb{Z}_{6} generated by 4 : namely, $\{0,2,4\}$, or $\langle 2\rangle$ in different notation.
There does exist a homomorphism ϕ from \mathbb{Z}_{6} into \mathbb{Z}_{4} with this kernel: namely, the composition of the coset mapping $\mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6} /\langle 2\rangle \simeq \mathbb{Z}_{2}$ with the isomorphism from \mathbb{Z}_{2} onto the subgroup $\{0,2\}$ of \mathbb{Z}_{4}. This ϕ maps the elements 0,2 , and 4 of \mathbb{Z}_{6} to the element 0 of \mathbb{Z}_{4} and maps the elements 1,3 , and 5 of \mathbb{Z}_{6} to the element 2 of \mathbb{Z}_{4}. By the fundamental homomorphism theorem (page 140 in the textbook), every homomorphism from \mathbb{Z}_{6} into \mathbb{Z}_{4} with kernel $\langle 2\rangle$ factors through $\mathbb{Z}_{6} /\langle 2\rangle$, and since \mathbb{Z}_{4} has a unique subgroup of order 2 , there is only one such homomorphism.

If the kernel of ϕ contains additional elements, then the kernel has to be all of \mathbb{Z}_{6} (since the kernel is a subgroup, and by Lagrange's theorem the order of the kernel has to divide 6). In this case, ϕ is the homomorphism that sends every element to 0 .

One can also solve the problem from first principles by looking at the image of the generator 1 (which uniquely determines ϕ) and showing that the homomorphism property forces $\phi(1)$ to be either 0 or 2 .
10. When 3^{5000} is divided by 17 the remainder equals \qquad

Solution. Since 17 is a prime number, Fermat's theorem implies that $3^{16} \equiv 1 \bmod 17$. Now $5000=(312 \times 16)+8$, so $3^{5000} \equiv 3^{8} \bmod 17$. Finally observe that $3^{8}=81^{2} \equiv(-4)^{2} \equiv 16 \bmod 17$. Thus the remainder equals 16 .

3 Essay questions

In the following problems, you must give an explanation. (Continue on the back if you need more space.) Each problem counts 15 points. In addition, this section as a whole carries 5 style points based on how well your solutions are written.

Modern Algebra I

11. Give an example of a group G that has a pair of subgroups H and K with the property that the union $H \cup K$ is not a subgroup. Explain why your example works.

Solution. What can go wrong is that the union $H \cup K$ may not be closed under the group operation.
There are many examples. Here is a popular one: $G=\mathbb{Z}_{6}, H=$ $\{0,2,4\}, K=\{0,3\}$. Then H and K are subgroups of G, but the union $\{0,2,3,4\}$ is not a subgroup, because it contains the elements 2 and 3 but not the sum $2+3$.
12. Suppose G is a simple group (recall this means that G has no proper, nontrivial, normal subgroup), and $\phi: G \rightarrow G^{\prime}$ is a homomorphism onto a nontrivial group G^{\prime}. Show that ϕ is an isomorphism.

Solution. An isomorphism is a homomorphism that is both one-to-one and onto. It is given that the homomorphism ϕ is onto, so what needs to be shown is that ϕ is one-to-one. In other words, we need to show that the kernel of ϕ is trivial.

Now the kernel of ϕ is a normal subgroup of G; since G is simple, $\operatorname{Ker}(\phi)$ must be either trivial or all of G. In the second case, ϕ would send every element of G to the identity element of G^{\prime}, so ϕ would not map onto the nontrivial group G^{\prime}, contrary to hypothesis. Thus the only possibility is that the kernel of ϕ is the trivial subgroup of G, and so ϕ is one-to-one.
13. Show that the polynomial $x^{3}+4 x^{2}+4 x+2$ is irreducible over \mathbb{Q} but factors into linear factors over the field \mathbb{Z}_{11}.

Solution. The prime number 2 divides each of the coefficients except the leading coefficient, and 2^{2} does not divide the constant coefficient. Therefore Eisenstein's criterion applies and shows that the polynomial is irreducible over \mathbb{Q}.

Alternatively, observe that since the polynomial has degree 3, it factors only if it has at least one factor of degree 1 , or equivalently if it has at least one zero. The only candidates for zeroes in \mathbb{Q} are ± 1 and ± 2.

Modern Algebra I

One easily checks that none of the candidates actually is a zero, so the polynomial is irreducible over \mathbb{Q}.

By inspection, 1 is a zero of the polynomial in the field \mathbb{Z}_{11}, since $1+4+4+2=11$. Therefore $(x-1)$, or equivalently $(x+10)$, is a factor of the polynomial over this field. Long division in $\mathbb{Z}_{11}[x]$ shows that $x^{3}+4 x^{2}+4 x+2=(x+10)\left(x^{2}+5 x+9\right)$ in $\mathbb{Z}_{11}[x]$. Now 5 is the same as $-6(\bmod 11)$, and $x^{2}-6 x+9=(x-3)^{2}$, so $x^{3}+4 x^{2}+4 x+2$ factors over \mathbb{Z}_{11} as $(x+10)(x+8)^{2}$.

