Applied Algebra

Instructions Please answer these questions on your own paper. Explain your work in complete sentences.

1. Determine the smallest positive integer n with the property that there exist integers x and y such that $60 x+42 y=n$.

Solution. The statement describes the greatest common divisor of 60 and 42 . Since $60=2^{2} \times 3 \times 5$, and $42=2 \times 3 \times 7$, the greatest common divisor of 60 and 42 equals 2×3. Thus $n=6$.
2. Prove by induction that

$$
(1!\cdot 1)+(2!\cdot 2)+\cdots+(n!\cdot n)=(n+1)!-1
$$

for every positive integer n (where, as usual, the factorial n ! means the product of all the integers between 1 and n inclusive).

Solution. When $n=1$, the statement is valid because $1!\cdot 1=1$ and $(1+1)!-1=2-1=1$. Thus the basis step of the induction holds.

Suppose it is known that

$$
(1!\cdot 1)+(2!\cdot 2)+\cdots+(k!\cdot k)=(k+1)!-1
$$

for a certain positive integer k. Adding $(k+1)!\cdot(k+1)$ to both sides shows that

$$
\begin{aligned}
1!\cdot 1+2!\cdot 2+\cdots+k!\cdot k+(k+ & 1)!\cdot(k+1) \\
& =(k+1)!-1+(k+1)!\cdot(k+1) \\
& =(k+1)!(1+(k+1))-1 \\
& =((k+1)+1)!-1 .
\end{aligned}
$$

Therefore the statement for integer $k+1$ is a consequence of the statement for integer k. By mathematical induction, the statement holds for every positive integer.
3. When the number $65^{93} \times 56^{39}$ is written out, it has 237 digits. How many zeroes are there at the right-hand end? Explain how you know.

Solution. Since $65=5 \times 13$ and $56=7 \times 8$, the number has the prime factorization $2^{117} \times 5^{93} \times 7^{39} \times 13^{93}$. The number is divisible by 10^{93} but not by any larger power of 10 , so there are 93 zeroes at the end.

Applied Algebra

4. Find a multiplicative inverse of 23 modulo 31 .

Solution. Here is a matrix implementation of the Euclidean algorithm:

$$
\left(\begin{array}{lll}
1 & 0 & 31 \\
0 & 1 & 23
\end{array}\right) \xrightarrow{R 1 \rightarrow R 1-R 2}\left(\begin{array}{rrr}
1 & -1 & 8 \\
0 & 1 & 23
\end{array}\right) \xrightarrow{R 2 \rightarrow R 2-3 R 1}\left(\begin{array}{rrr}
1 & -1 & 8 \\
-3 & 4 & -1
\end{array}\right)
$$

Multiply the bottom row by -1 to see that $3 \times 31+(-4) \times 23=$ 1. Therefore -4 is one multiplicative inverse of 23 modulo 31 . An equivalent positive answer is $-4+31$ or 27 . The set of all possible answers is the congruence class $[27]_{31}$.
5. Solve the pair of simultaneous linear congruences

$$
\begin{cases}x \equiv 6 & \bmod 7 \\ x \equiv 5 & \bmod 17\end{cases}
$$

Solution. The numbers are small enough that you could find a solution by brute force. The first congruence says that x can be found in the list of numbers $6,13,20,27, \ldots$; the second congruence says that x can be found in the list of numbers $5,22,39,56, \ldots$; you need to write out enough terms to find a number that belongs to both lists.
The thematic method, however, is to start by writing 1 as an integral linear combination of 7 and 17 . Here is the relevant matrix computation:

$$
\left(\begin{array}{rrr}
1 & 0 & 17 \\
0 & 1 & 7
\end{array}\right) \xrightarrow{R 1 \rightarrow R 1-2 R 2}\left(\begin{array}{rrr}
1 & -2 & 3 \\
0 & 1 & 7
\end{array}\right) \xrightarrow{R 2 \rightarrow R 2-2 R 1}\left(\begin{array}{rrr}
1 & -2 & 3 \\
-2 & 5 & 1
\end{array}\right)
$$

Thus $-2 \times 17+5 \times 7=1$. Consequently, $-2 \times 17 \equiv 1 \bmod 7$, and $5 \times 7 \equiv 1 \bmod 17$. It follows that $6 \times(-2) \times 17+5 \times 5 \times 7$ is one solution for x. This value simplifies to -29 . The set of all solutions is the congruence class $[-29]_{119}$, or, equivalently, $[90]_{119}$.
6. Using the RSA system, I encoded my birthday (month and day) in two blocks as 305 . The public key is the pair $(33,7)$, where 33 is the base n and 7 is the exponent a. When is my birthday?

Applied Algebra

Solution. The decoding exponent is a multiplicative inverse of 7 mod $\phi(33)$, and $\phi(33)=\phi(3 \times 11)=\phi(3) \times \phi(11)=2 \times 10=20$. Evidently $3 \times 7 \equiv 1 \bmod 20$, so 3 is the decoding exponent.

Now $30^{3} \equiv(-3)^{3} \equiv-27 \equiv 6 \bmod 33$, so the first block decodes to 6 . Moreover, $5^{3} \equiv 125 \equiv 26 \bmod 33$, so the second block decodes to 26 . My birthday is $6 / 26$, that is, June 26 .
7. Describe the words (sequences of letters a and b) that the following finite-state automaton accepts.

Solution. The automaton accepts the empty word and also words of even length with the property that the letter a appears in positions $2,4,6$, and so on, and the letters in the odd-numbered positions are arbitrary.
8. Let R be the relation defined on the set of positive integers by $x R y$ if and only if $x^{2} \equiv y^{3} \bmod 4$. Is this relation R reflexive? symmetric? transitive? Explain how you know.

Solution. The relation is not reflexive. Indeed, $3^{2}=9 \equiv 1 \bmod 4$, while $3^{3}=27 \equiv 3 \bmod 4$, so $3^{2} \not \equiv 3^{3} \bmod 4$: the number 3 is not related to itself.

The relation is not symmetric. Indeed, the number 3 is related to 1 because $3^{2} \equiv 1^{3} \bmod 4$; but 1 is not related to 3 , for $1^{2} \not \equiv 3^{3} \bmod 4$.

The relation is transitive. To see why, suppose that $x R y$ and $y R z$. To show that $x R z$, consider two cases: the number y is either even or odd.

If y is even, then both y^{2} and y^{3} are divisible by 4 . Therefore $x^{2} \equiv$ $y^{3} \equiv 0 \bmod 4$, and $0 \equiv y^{2} \equiv z^{3} \bmod 4$. Thus $x^{2} \equiv z^{3} \bmod 4($ since both x^{2} and z^{3} are congruent to 0), so $x R z$.
If y is odd, then so is y^{3}. Since $x^{2} \equiv y^{3}$, the number x must be odd too. The numbers x and y are therefore relatively prime to 4 , so Fermat's theorem applies to them. Now $\phi(4)=2$, so $x^{2} \equiv 1 \bmod 4$ and $y^{2} \equiv 1$

Applied Algebra

$\bmod 4$. But $y R z$, so $z^{3} \equiv 1 \bmod 4$. Therefore $x^{2} \equiv z^{3} \bmod 4($ since both x^{2} and z^{3} are congruent to 1), so $x R z$.

In summary, the assumption that both $x R y$ and $y R z$ leads to the conclusion that $x R z$ (whether y is even or odd). Consequently, the relation R is transitive.

Another way to look at this problem is that the relation really lives on \mathbb{Z}_{4}. This set is finite, so you can write an adjacency matrix for the relation, as follows. I use F (false) and T (true) instead of the usual 0 and 1 to avoid confusion with the elements 0 and 1 of the integers.

	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$	T	F	T	F
$[1]$	F	T	F	F
$[2]$	T	F	T	F
$[3]$	F	T	F	F

The matrix reveals that the relation is not reflexive (because not all the entries on the main diagonal are " T ") and not symmetric (because the ([1], [3]) entry does not match the ([3], [1]) entry). Checking transitivity still requires the examination of cases.
9. State the Chinese Remainder Theorem.

Solution. See page 54 in the textbook.

