Applied Algebra

Instructions Please answer these questions on your own paper. Explain your work in complete sentences.

1. Determine the smallest positive integer n with the property that there exist integers x and y such that $60 x+42 y=n$.
2. Prove by induction that

$$
(1!\cdot 1)+(2!\cdot 2)+\cdots+(n!\cdot n)=(n+1)!-1
$$

for every positive integer n (where, as usual, the factorial n ! means the product of all the integers between 1 and n inclusive).
3. When the number $65^{93} \times 56^{39}$ is written out, it has 237 digits. How many zeroes are there at the right-hand end? Explain how you know.
4. Find a multiplicative inverse of 23 modulo 31 .
5. Solve the pair of simultaneous linear congruences

$$
\begin{cases}x \equiv 6 & \bmod 7 \\ x \equiv 5 & \bmod 17\end{cases}
$$

6. Using the RSA system, I encoded my birthday (month and day) in two blocks as 305 . The public key is the pair $(33,7)$, where 33 is the base n and 7 is the exponent a. When is my birthday?
7. Describe the words (sequences of letters a and b) that the following finite-state automaton accepts.

8. Let R be the relation defined on the set of positive integers by $x R y$ if and only if $x^{2} \equiv y^{3} \bmod 4$. Is this relation R reflexive? symmetric? transitive? Explain how you know.
9. State the Chinese Remainder Theorem.
