
Math 433 Exam 2

Applied Algebra
Summer 2009

Instructions Please answer these questions on your own paper. Explain
your work in complete sentences.

1. Write the permutation (1 2 3)(3 4 5)(4 5 6) as a product of disjoint
cycles.

Solution. Remembering to read the product from right to left, you
can trace the image of each number as follows: 1 → 1 → 1 → 2,
2 → 2 → 2 → 3, 3 → 3 → 4 → 4, 4 → 5 → 3 → 1, 5 → 6 → 6 → 6,
6 → 4 → 5 → 5. Thus the permutation equals the product of disjoint
cycles (1 2 3 4)(5 6).

2. What is the highest possible order of an element of the symmetric group
S(10)?

Solution. You know that every permutation can be written as a prod-
uct of disjoint cycles, and the order of such a product equals the least
common multiple of the lengths of the cycles. The product of a 7-cycle
and a 3-cycle has order 21, and that is the highest order you can get
with a product of two cycles. But you can do better with a product
of three cycles: the product of a 5-cycle, a 3-cycle, and a transposition
has order 30. That 30 is the maximum can be seen by considering all
the possible partitions of 10.

3. Consider the operation ∗ defined on the positive real numbers as fol-
lows: a ∗ b = 5ab (where ab on the right-hand side denotes ordinary
multiplication). Does this operation ∗ provide the positive real num-
bers with a group structure?

Solution. The operation is well defined: if a and b are positive, then
so is 5ab. The operation is associative: both (a ∗ b) ∗ c and a ∗ (b ∗ c)
are equal to 25abc. The number 1/5 is an identity element for the
operation: a ∗ (1/5) = a for every a. The inverse of a is 1/(25a). Thus
all the properties of a group are satisfied.

Remark This group is isomorphic to the group of positive real num-
bers under the usual multiplication operation. Indeed, if f : (R+, ∗)→
(R+, ·) is defined by setting f(a) equal to 5a, then f(a∗b) = f(a) ·f(b).
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4. Consider the set of 2× 2 matrices of the form

(
a 0
b a

)
, where a and b

are elements of Z2 (the integers mod 2). Suppose such matrices are
added and multiplied in the usual way, but with the arithmetic done
in Z2. Is this structure a ring?

Solution. First of all, the additive structure is a group: the sum of
two matrices of the indicated form is another one (closure); addition
of matrices is associative; the zero matrix (the additive identity) has
the indicated form (a = b = 0); and every matrix is its own additive
inverse under addition mod 2. Secondly, since(

a 0
b a

)(
c 0
d c

)
=

(
ac 0

ad + bc ac

)
,

the set is closed under matrix multiplication, and the multiplication
operation is even commutative; matrix multiplication is an associative
operation; and matrix multiplication distributes over matrix addition.
Thus all the properties of a ring are satisfied.

5. Suppose H and K are subgroups of a group G. Is the union H ∪ K
necessarily a subgroup of G?

Solution. Almost any example you try will provide a counterexample.
For instance, let G be the group of integers under addition, let H be
the subgroup consisting of even integers, and let K be the subgroup
consisting of integers divisible by 3. The set H ∪K is not a subgroup,
for it is not closed under addition: both 2 and 3 are elements of H ∪K,
but their sum 5 is not an element of H ∪K.

6. Let G denote the multiplicative group of invertible congruence classes
of integers modulo 15. The group G has subgroups of what orders?

Solution. The group G has order 8, as you can see either by computing
that ϕ(15) = ϕ(3)ϕ(5) = 2 × 4 = 8 or by simply listing the elements
of G: namely, [1], [2], [4], [7], [8], [11], [13], and [14]. By Lagrange’s
theorem, the only conceivable orders of subgroups are divisors of 8:
namely, 1, 2, 4, and 8. All of these candidates actually are orders
of subgroups of G in this example, for the trivial subgroup {[1]} has
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order 1, the whole group G itself has order 8, the subgroup {[1], [4]}
has order 2, and the subgroup {[1], [2], [4], [8]} has order 4.

7. Give an example of two finite groups of the same order that are not
isomorphic groups.

Solution. The Klein 4-group has order 4 but is not cyclic, so it is not
isomorphic to (Z4, +); the symmetric group S(3) has order 6 but is not
abelian, so it is not isomorphic to (Z6, +); other examples are possible.

8. Suppose a coding function f : B3 → B6 is determined by the generator
matrix 1 0 0 1 0 1

0 1 0 1 1 0
0 0 1 0 1 1

 .

Suppose a message encoded by this function is received with errors as

101101 010101 011111.

Decode the received message.
[If you write your decoded message as three words in B3 and convert
each binary word into an equivalent single decimal digit, then you will
know if you have the right answer.]

Solution. Method 1. Here is a list of the eight codewords (linear
combinations over Z2 of the rows of the generator matrix):

000000
100101
010110
001011
110011
101110
011101
111000

By inspection, you can see that the first received word, 101101, must
decode to the second codeword, 100101, from which it differs in one
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place. The second received word, 010101, decodes to the seventh code-
word, 011101, from which it differs in one place. The third received
word, 011111, also decodes to the seventh codeword, from which it
differs in one place.

The original words in B3 are the first three binary digits of the decoded
words: 100 011 011. Since 100 in binary converts to 4 in base ten, and
11 in binary converts to 3 in base ten, the base ten equivalent of the
message is 4 3 3, the course number.

Method 2. This code has the following parity-check matrix:
1 0 1
1 1 0
0 1 1
1 0 0
0 1 0
0 0 1

 .

Here are the first seven coset leaders and corresponding syndromes:

000 000000
001 000001
010 000010
100 000100
011 001000
110 010000
101 100000

The first received word, 101101, has syndrome 011, so this word decodes
to 101101 + 001000, which equals 100101. The second received word,
010101, has syndrome 011, so this word decodes to 010101 + 001000,
or 011101. The third received word, 011111, has syndrome 010 and
decodes to 011111 + 000010, or 011101. The answer is the same as
before.

Bonus problem for extra credit Complete the following group
table. (Although the group elements are labeled 1 through 9, the group
operation ∗ is neither ordinary addition nor ordinary multiplication,
and the number 1 is not the identity element.)
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∗ 1 2 3 4 5 6 7 8 9

1 9 6

2 6 7

3 8 5

4 7 1

5 5

6 1 2

7 5 1

8 7 4

9 6 3

Notice that this problem is not a sudoku! On the one hand, there is no
constraint on 3 × 3 subsquares. On the other hand, you have the full
power of a group law to help fill in the entries.

Solution. You can get a lot of information from the group law. For
instance, since 5 ∗ 5 = 5, the element 5 is the identity element, so you
can immediately fill in the middle row and the middle column of the
table. Since (1∗1)∗9 = 9∗9 = 3, and 1∗ (1∗9) = 1∗6, the associative
law reveals that 3 = 1 ∗ 6. Although you can continue to play games
with the associative law to get more entries, there is a systematic way
to complete the table.

Since 1 ∗ 1 ∗ 1 = 1 ∗ 9 = 6, the element 1 does not have order three. By
Lagrange’s theorem, the only possible orders of elements in a group of
order nine are one, three, and nine. Therefore the element 1 must have
order nine. Thus the group is cyclic, and the element 1 is a generator.
If you write g as an alternate designation of the element 1, then you
can use multiplicative notation for the group operation.
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Now g2 = 1 ∗ 1 = 9, g4 = 9 ∗ 9 = 3, g8 = 3 ∗ 3 = 8, g7 = g16 = 8 ∗ 8 = 4,
g5 = g14 = 4 ∗ 4 = 7, g3 = 1 ∗ 1 ∗ 1 = 6, g6 = 6 ∗ 6 = 2, and
g0 = 5. The identification of each group element as a power of g
makes it simple to determine any product in the group. For instance,
7 ∗ 2 = g5g6 = g11 = g2 = 9. Here is the complete table:

g g6 g4 g7 id g3 g5 g8 g2

∗ 1 2 3 4 5 6 7 8 9

g 1 9 4 7 8 1 3 2 5 6

g6 2 4 6 1 3 2 5 9 7 8

g4 3 7 1 8 9 3 4 5 6 2

g7 4 8 3 9 7 4 1 6 2 5

id 5 1 2 3 4 5 6 7 8 9

g3 6 3 5 4 1 6 2 8 9 7

g5 7 2 9 5 6 7 8 1 3 4

g8 8 5 7 6 2 8 9 3 4 1

g2 9 6 8 2 5 9 7 4 1 3
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