Applied Algebra

Instructions Please answer these questions on your own paper. Explain your work in complete sentences.

1. Write the permutation $(123)(345)(456)$ as a product of disjoint cycles.
2. What is the highest possible order of an element of the symmetric group $S(10)$?
3. Consider the operation $*$ defined on the positive real numbers as follows: $a * b=5 a b$ (where $a b$ on the right-hand side denotes ordinary multiplication). Does this operation $*$ provide the positive real numbers with a group structure?
4. Consider the set of 2×2 matrices of the form $\left(\begin{array}{ll}a & 0 \\ b & a\end{array}\right)$, where a and b are elements of \mathbb{Z}_{2} (the integers mod 2). Suppose such matrices are added and multiplied in the usual way, but with the arithmetic done in \mathbb{Z}_{2}. Is this structure a ring?
5. Suppose H and K are subgroups of a group G. Is the union $H \cup K$ necessarily a subgroup of G ?
6. Let G denote the multiplicative group of invertible congruence classes of integers modulo 15 . The group G has subgroups of what orders?
7. Give an example of two finite groups of the same order that are not isomorphic groups.
8. Suppose a coding function $f: \mathbf{B}^{3} \rightarrow \mathbf{B}^{6}$ is determined by the generator matrix

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right) .
$$

Suppose a message encoded by this function is received with errors as

$$
101101010101011111 .
$$

Decode the received message.
[If you write your decoded message as three words in \mathbf{B}^{3} and convert each binary word into an equivalent single decimal digit, then you will know if you have the right answer.]

Applied Algebra

Bonus problem for extra credit Complete the following group table. (Although the group elements are labeled 1 through 9, the group operation $*$ is neither ordinary addition nor ordinary multiplication, and the number 1 is not the identity element.)

*	1	2	3	4	5	6	7	8	9
1	9								6
2		6						7	
3			8				5		
4				7		1			
5					5				
6				1		2			
7			5				1		
8		7						4	
9	6								3

Notice that this problem is not a sudoku! On the one hand, there is no constraint on 3×3 subsquares. On the other hand, you have the full power of a group law to help fill in the entries.

