Instructions Please answer these questions on your own paper. Explain your work in complete sentences.

- 1. Write the permutation $(1\ 2\ 3)(3\ 4\ 5)(4\ 5\ 6)$ as a product of *disjoint* cycles.
- 2. What is the highest possible order of an element of the symmetric group S(10)?
- 3. Consider the operation * defined on the positive real numbers as follows: a * b = 5ab (where ab on the right-hand side denotes ordinary multiplication). Does this operation * provide the positive real numbers with a group structure?
- 4. Consider the set of 2×2 matrices of the form $\begin{pmatrix} a & 0 \\ b & a \end{pmatrix}$, where a and b are elements of \mathbb{Z}_2 (the integers mod 2). Suppose such matrices are added and multiplied in the usual way, but with the arithmetic done in \mathbb{Z}_2 . Is this structure a ring?
- 5. Suppose H and K are subgroups of a group G. Is the union $H \cup K$ necessarily a subgroup of G?
- 6. Let G denote the multiplicative group of invertible congruence classes of integers modulo 15. The group G has subgroups of what orders?
- 7. Give an example of two finite groups of the same order that are not isomorphic groups.
- 8. Suppose a coding function $f: \mathbf{B}^3 \to \mathbf{B}^6$ is determined by the generator matrix

(1)	0	0	1	0	1	
0	1	0	1	1	0	
0	0	1	0	1	1/	

Suppose a message encoded by this function is received with errors as

 $101101 \quad 010101 \quad 011111.$

Decode the received message.

[If you write your decoded message as three words in \mathbf{B}^3 and convert each binary word into an equivalent single decimal digit, then you will know if you have the right answer.]

Exam 2 Applied Algebra

Bonus problem for extra credit Complete the following group table. (Although the group elements are labeled 1 through 9, the group operation * is neither ordinary addition nor ordinary multiplication, and the number 1 is not the identity element.)

*	1	2	3	4	5	6	7	8	9
1	9								6
2		6						7	
3			8				5		
4				7		1			
5					5				
6				1		2			
7			5				1		
8		7						4	
9	6								3

Notice that this problem is not a sudoku! On the one hand, there is no constraint on 3×3 subsquares. On the other hand, you have the full power of a group law to help fill in the entries.