Applied Algebra

Instructions Please write your name in the upper right-hand corner of the page. Use complete sentences, along with any necessary supporting calculations, to answer the following questions.

1. Find a positive, two-digit integer n such that $\operatorname{both} \operatorname{gcd}(n, 45)=9$ and $\operatorname{gcd}(n, 16)=4$.

Solution. Since $45=5 \times 9$, the condition that $\operatorname{gcd}(n, 45)=9$ implies that n is a multiple of 9 but not a multiple of 5 . Similarly, the condition that $\operatorname{gcd}(n, 16)=4$ implies that n is a multiple of 4 but not a multiple of 8 . Consequently, the required integer n is a multiple of 4×9 but not a multiple of 8×9. Since n is a two-digit integer, the value of n must be 36 .
2. Find integers s and t such that $6 s+160 t=2$.

Solution. The solution can be obtained from the Euclidean algorithm as follows.

$$
\left.\begin{array}{rl}
160 & =6 \times 26+4 \\
6 & =4 \times 1+2 \\
4 & =2 \times 2+0
\end{array}\right\} \quad \text { and back substitute: } \quad\left\{\begin{aligned}
2 & =6-4 \\
& =6-(160-6 \times 26) \\
& =6 \times 27+160 \times(-1) .
\end{aligned}\right.
$$

Therefore $s=27$ and $t=-1$.
Alternatively, you could arrive at the same result via the matrix method, as follows.

$$
\left(\begin{array}{rrr}
1 & 0 & 160 \\
0 & 1 & 6
\end{array}\right) \xrightarrow{R 1 \rightarrow R 1-26 R 2}\left(\begin{array}{rrr}
1 & -26 & 4 \\
0 & 1 & 6
\end{array}\right) \xrightarrow{R 2 \rightarrow R 2-R 1}\left(\begin{array}{rrr}
1 & -26 & 4 \\
-1 & 27 & 2
\end{array}\right) .
$$

From the bottom row of the final matrix, you can read off that (as before) $160 \times(-1)+6 \times 27=2$.

Remark The answer is not unique. You can add $160 k$ to s (where k is an arbitrary integer) and simultaneously subtract $6 k$ from t to get another valid answer.

