Applied Algebra

Instructions Please write your name in the upper right-hand corner of the page. Use complete sentences, along with any necessary supporting calculations, to answer the following questions.

1. Consider the set of integers that are divisible either by 2 or by 3 or by both 2 and 3. Is this subset of the integers a subgroup of the integers (under addition)? Explain why or why not.

Solution. The set is not a subgroup, for the set is not closed under addition: the numbers 2 and 3 are in the set, but their sum 5 is not in the set.
2. List all the cyclic subgroups of the group $\left(\mathbb{Z}_{6},+\right)$ [the integers $\bmod 6$ under addition].

Solution. Remark on notation: The elements of \mathbb{Z}_{6} are the equivalence classes $[0]_{6},[1]_{6},[2]_{6},[3]_{6},[4]_{6}$, and $[5]_{6}$, but it is reasonable in the context of this problem to use the representatives $0,1,2,3,4$, and 5 as abbreviations for the equivalence classes.

The element 0 generates the cyclic subgroup consisting of the singleton $\{0\}$.
The element 1 generates the whole cyclic group \mathbb{Z}_{6}. The element 5 is an alternative generator of \mathbb{Z}_{6}.

The element 2 generates the cyclic subgroup $\{0,2,4\}$. The element 4 is an alternative generator of this subgroup.
The element 3 generates the cyclic subgroup $\{0,3\}$.

Remark It is a theorem that every subgroup of a cyclic group is necessarily cyclic. See Exercise 7 on page 212 in section 5.1.

