Applied Algebra

Instructions Please write your name in the upper right-hand corner of the page. Use complete sentences, along with any necessary supporting calculations, to answer the following questions.

1. Prove by induction that $\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$ for every positive integer n.

Solution. When $n=1$, the equation reduces to the true statement $\frac{1}{2}=1-\frac{1}{2}$, so the basis step holds.
Now suppose that the equality

$$
\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{k}}=1-\frac{1}{2^{k}}
$$

is known for a certain positive integer k. Adding $\frac{1}{2^{k+1}}$ to both sides shows that

$$
\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{k}}+\frac{1}{2^{k+1}}=1-\frac{1}{2^{k}}+\frac{1}{2^{k+1}}
$$

and since $\frac{1}{2^{k}}=\frac{1}{2^{k+1}}+\frac{1}{2^{k+1}}$, the right-hand side reduces to $1-\frac{1}{2^{k+1}}$. Therefore the statement for integer $k+1$ is a consequence of the statement for integer k.
By induction, the statement holds for every positive integer n.

Remark This problem is a special case of Exercise 7 on page 24 of the textbook, a problem that we worked in class yesterday.
2. Suppose that a and b are positive integers. Explain why $\operatorname{gcd}\left(a^{2}, b^{2}\right)$ cannot be equal to 5 .

Solution. The greatest common divisor of two positive integers equals the product of the prime factors that they have in common (counting repetitions). The prime factorization of a^{2} is the square of the prime factorization of a, and similarly for b. Therefore $\operatorname{gcd}\left(a^{2}, b^{2}\right)=$ $[\operatorname{gcd}(a, b)]^{2}$. But 5 is not the square of an integer, so 5 cannot be the greatest common divisor of a^{2} and b^{2}.

