Applied Algebra

Instructions Please write your name in the upper right-hand corner of the page. Use complete sentences, along with any necessary supporting calculations, to answer the following questions.

1. Find an integer x such that $100 x \equiv 7 \bmod 433$.

Solution. The strategy is to use the Euclidean algorithm to find the multiplicative inverse of $100 \bmod 433$. Here is the calculation via the matrix method.

$$
\left(\begin{array}{lll}
1 & 0 & 433 \\
0 & 1 & 100
\end{array}\right) \xrightarrow{R 1 \rightarrow R 1-4 R 2}\left(\begin{array}{rrr}
1 & -4 & 33 \\
0 & 1 & 100
\end{array}\right) \xrightarrow{R 2 \rightarrow R 2-3 R 1}\left(\begin{array}{rrr}
1 & -4 & 33 \\
-3 & 13 & 1
\end{array}\right)
$$

The conclusion from the calculation is that $-3 \times 433+13 \times 100=1$. In other words, the numbers 13 and 100 are multiplicative inverses $\bmod 433$. Therefore multiplying the original congruence by 13 shows that $x \equiv 13 \times 7 \bmod 433$, or $x \equiv 91 \bmod 433$.
2. In \mathbb{Z}_{8} there are eight elements: the congruence classes $[0],[1], \ldots,[7]$. How many of these eight elements have multiplicative inverses in \mathbb{Z}_{8} ?

Solution. We know from class (or from Theorem 1.4.3 on page 43) that the congruence class $[a]$ is invertible in \mathbb{Z}_{8} if and only if $\operatorname{gcd}(a, 8)=1$. Since 2 is the only prime divisor of 8 , the odd values of a are the ones for which $\operatorname{gcd}(a, 8)=1$. Thus there are exactly four invertible elements in \mathbb{Z}_{8} : namely, [1], [3], [5], and [7].

