Applied Algebra

Instructions Please write your name in the upper right-hand corner of the page. Use complete sentences, along with any necessary supporting calculations, to answer the following questions.

1. Solve the pair of simultaneous linear congruences

$$
\left\{\begin{array}{l}
x \equiv 5 \quad \bmod 7 \\
x \equiv 10 \quad \bmod 13
\end{array}\right.
$$

Solution. The first step is to use the Euclidean algorithm to find a linear combination of the two moduli that is equal to 1 . Here is the computation using the matrix method.

$$
\left(\begin{array}{rrr}
1 & 0 & 13 \\
0 & 1 & 7
\end{array}\right) \xrightarrow{R 1 \rightarrow R 1-R 2}\left(\begin{array}{rrr}
1 & -1 & 6 \\
0 & 1 & 7
\end{array}\right) \xrightarrow{R 2 \rightarrow R 2-R 1}\left(\begin{array}{rrr}
1 & -1 & 6 \\
-1 & 2 & 1
\end{array}\right)
$$

The deduction is that $(-1) \times 13+2 \times 7=1$. Thus $(-1) \times 13 \equiv 1$ $\bmod 7$ and $2 \times 7 \equiv 1 \bmod 13$. Therefore one value of x that solves the problem is $x=5 \times(-1) \times 13+10 \times 2 \times 7=75$.

Remark Other solutions have the form $75+91 k$ for integers k. The solution can be viewed as the congruence class $[75]_{91}$ in \mathbb{Z}_{91} (where $91=7 \times 13$).
2. Which of the values $\phi(25)$ and $\phi(27)$ of Euler's totient function is the greater?

Solution. You know that $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$ when p is a prime number. Therefore $\phi(25)=\phi\left(5^{2}\right)=5^{2}-5^{1}=20$, and $\phi(27)=\phi\left(3^{3}\right)=3^{3}-3^{2}=$ 18. Thus $\phi(25)$ is greater than $\phi(27)$.

