Examination 1

1. Suppose $X=\{a, b\}$. List all possible topologies on X.
2. Define the following concepts:
(a) interior of a set, and
(b) basis for a topology.
3. Explain why $\left\{(x, y) \in \mathbb{R}^{2}: x y=0\right\}$ is a closed subset of the metric space \mathbb{R}^{2} with the usual Pythagorean metric.
4. Consider \mathbb{Q} (the set of rational numbers) as a subset of \mathbb{R} (the real numbers). Determine the frontier (the boundary) of \mathbb{Q}
(a) when the metric on \mathbb{R} is the usual absolute-value metric, and
(b) when the metric on \mathbb{R} is the discrete metric.
[Recall that the discrete metric is the metric for which the distance between every two different points is equal to 1.]
5. Let $d(x, y)$ denote $\log (1+|x-y|)$ for real numbers x and y. Show that d is a metric on \mathbb{R}. [Reminder: the characteristic property of logarithms says that $\log (u)+\log (v)=\log (u v)$.
6. True or false: If \mathbb{R} is equipped with the discrete metric, then every function from \mathbb{R} to \mathbb{R} is continuous. Explain your answer.
7. Suppose τ is a topology on \mathbb{R}^{2} with the property that every line is a τ-open set. Prove that τ must be the discrete topology (the topology in which every subset of \mathbb{R}^{2} is open).
8. Suppose τ is a topology on a set X. Let σ be the collection of all τ-closed subsets of X. Is this collection σ a topology on X ? Explain why or why not.

Extra Credit. Valentine's Day Bonus Problem:

Suppose X is a topological space. Define $\triangle A$ to be $\left(A^{\prime}\right)^{\circ}$ (that is, the interior of the derived set of A) when $A \subset X$. Prove that $\triangle(\triangle A)=\bigcirc A$.

