- 1. Suppose $X = \{a, b\}$. List all possible topologies on X.
- 2. Define the following concepts:
 - (a) interior of a set, and
 - (b) basis for a topology.
- 3. Explain why { $(x, y) \in \mathbb{R}^2$: xy = 0 } is a closed subset of the metric space \mathbb{R}^2 with the usual Pythagorean metric.
- 4. Consider \mathbb{Q} (the set of rational numbers) as a subset of \mathbb{R} (the real numbers). Determine the frontier (the boundary) of \mathbb{Q}
 - (a) when the metric on \mathbb{R} is the usual absolute-value metric, and
 - (b) when the metric on R is the discrete metric.[Recall that the discrete metric is the metric for which the distance between every two different points is equal to 1.]
- 5. Let d(x, y) denote $\log(1 + |x y|)$ for real numbers x and y. Show that d is a metric on \mathbb{R} . [Reminder: the characteristic property of logarithms says that $\log(u) + \log(v) = \log(uv)$.]
- 6. True or false: If \mathbb{R} is equipped with the discrete metric, then every function from \mathbb{R} to \mathbb{R} is continuous. Explain your answer.
- 7. Suppose τ is a topology on \mathbb{R}^2 with the property that every line is a τ -open set. Prove that τ must be the discrete topology (the topology in which every subset of \mathbb{R}^2 is open).
- 8. Suppose τ is a topology on a set *X*. Let σ be the collection of all τ -closed subsets of *X*. Is this collection σ a topology on *X*? Explain why or why not.

Extra Credit. Valentine's Day Bonus Problem:

Suppose X is a topological space. Define $\heartsuit A$ to be $(A')^{\circ}$ (that is, the interior of the derived set of A) when $A \subset X$. Prove that $\heartsuit(\heartsuit A) = \heartsuit A$.