Examination 2

1. Equip \mathbb{R}, the set of real numbers, with the standard topology (corresponding to the absolute-value metric). Let the subspace Y be the half-open interval $[0,2)$, that is, $\{x \in \mathbb{R}: 0 \leq x<2\}$. Let A be the interval $[0,1)$. With respect to the subspace topology on Y, is the set A open, closed, both, or neither? Explain.
2. Equip \mathbb{N}, the set of natural numbers, with the cofinite topology (that is, the proper closed sets are the finite sets). With respect to the corresponding product topology on the product space $\mathbb{N} \times \mathbb{N}$, is the "diagonal" subset

$$
\{(n, n) \in \mathbb{N} \times \mathbb{N}: n \in \mathbb{N}\}
$$

open, closed, both, or neither? Explain.
3. Let X be $\{x \in \mathbb{R}: 0<x\}$ (the set of positive real numbers) equipped with the discrete topology, and let $f: X \rightarrow X$ be defined by setting $f(x)$ equal to x^{2} for each value of x. Is this function f a homeomorphism? Explain why or why not.
4. Prove that if a topological space satisfies the separation property T_{4} and also satisfies the separation property T_{1}, then the space necessarily satisfies the separation property T_{2}.
5. State either Urysohn's Lemma or Tietze's Extension Theorem.
6. Does there exist a topology τ on the set \mathbb{R} of real numbers that makes (\mathbb{R}, τ) into a compact topological space? Explain why or why not.
7. With respect to the standard topology on the real numbers, there does not exist a function $f:[0,1] \rightarrow(0,1)$ that is simultaneously continuous and surjective (onto). Why not?
8. Give an example of a topological space that is first countable but not second countable. Explain why your example works.

Bonus Problem for Extra Credit:

Prove the following version of Cantor's nested-set theorem: If X is a Hausdorff topological space, and $\left\{K_{j}\right\}_{j=1}^{\infty}$ is a decreasing sequence of nonempty compact subsets of X (that is, $K_{1} \supset K_{2} \supset \cdots$), then the intersection $\bigcap_{j=1}^{\infty} K_{j}$ is not empty.

