- 1. (30 points) Consider the topological space (X, \mathcal{T}) , where $X = \{a, b, c\}$, and $\mathcal{T} = \{\emptyset, X, \{a\}, \{b, c\}\}$. There are $2^3 = 8$ subsets of X: namely, $\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}$, and $\{a, b, c\}$. Which of these eight subsets of X are connected, and which are disconnected? Explain why. (Hint: remember that a subset A is connected if and only if the topological space (A, \mathcal{T}_A) is connected.)
- 2. (30 points) In the product space $\mathbb{R} \times \mathbb{R}$, consider the subset A defined by $A = \{ (x, y) : x > 0, y > 0, \text{ and } x + y < 1 \}$, as shown in the diagram. Determine the closure of A in $\mathbb{R} \times \mathbb{R}$ (with the product topology), and justify your answer, when
 - (i) both copies of \mathbb{R} carry the half-open interval \mathcal{H} topology;
- A 1
- (ii) both copies of \mathbb{R} carry the open half-line \mathcal{C} topology;
- (iii) the first copy of \mathbb{R} carries the discrete \mathcal{D} topology, and the second copy of \mathbb{R} carries the trivial indiscrete \mathcal{I} topology.

(Hint: remember that a point p belongs to the closure of A if and only if every neighborhood of p intersects A.)

- 3. (15 points)
 - (i) Define what it means for a topological space to be connected.
 - (ii) State another property that is equivalent to connectedness.
 - (iii) State yet another property that is equivalent to connectedness.

In the next four questions, give a brief explanation if the answer is "Yes", and exhibit a counterexample if the answer is "No". (6 points each)

- 4. If X and Y are topological spaces, $f: X \to Y$ is a homeomorphism, and B is a connected subset of Y, must $f^{-1}(B)$ be a connected subset of X?
- 5. Is the additive inverse function $i : \mathbb{R} \to \mathbb{R}$ defined by the formula i(x) = -x an \mathcal{H} - \mathcal{C} continuous function?
- 6. If X and Y are topological spaces, does the collection of subsets of $X \times Y$ of the form $U \times V$, where U is an open subset of X and V is an open subset of Y, form a subbase for the product topology on $X \times Y$?
- 7. Is it true that a topological space X is disconnected if and only if every subset of X is both open and closed?

Extra credit (6 points):

8. Consider the infinite product space \mathbb{R}^{ω} , which may be viewed as the space of all sequences (x_1, x_2, \ldots) of real numbers. Let A be the subset of \mathbb{R}^{ω} consisting of all convergent sequences, that is, sequences such that $\lim_{j \to \infty} x_j$

exists. Determine the interior of A in \mathbb{R}^{ω} and the closure of A in \mathbb{R}^{ω} (where \mathbb{R}^{ω} carries the product topology). Explain your answers.