1. (30 points) Consider the topological space (X, \mathcal{T}), where $X=\{a, b, c\}$, and $\mathcal{T}=\{\varnothing, X,\{a\},\{b, c\}\}$. There are $2^{3}=8$ subsets of X : namely, $\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\}$, and $\{a, b, c\}$. Which of these eight subsets of X are connected, and which are disconnected? Explain why. (Hint: remember that a subset A is connected if and only if the topological space (A, \mathcal{T}_{A}) is connected.)
2. (30 points) In the product space $\mathbb{R} \times \mathbb{R}$, consider the subset A defined by $A=\{(x, y): x>0, y>0$, and $x+y<1\}$, as shown in 1$\}$ the diagram. Determine the closure of A in $\mathbb{R} \times \mathbb{R}$ (with the product topology), and justify your answer, when
(i) both copies of \mathbb{R} carry the half-open interval \mathcal{H} topology;

(ii) both copies of \mathbb{R} carry the open half-line \mathcal{C} topology;
(iii) the first copy of \mathbb{R} carries the discrete \mathcal{D} topology, and the second copy of \mathbb{R} carries the trivial indiscrete \mathcal{I} topology.
(Hint: remember that a point p belongs to the closure of A if and only if every neighborhood of p intersects A.)
3. (15 points)
(i) Define what it means for a topological space to be connected.
(ii) State another property that is equivalent to connectedness.
(iii) State yet another property that is equivalent to connectedness.

In the next four questions, give a brief explanation if the answer is "Yes", and exhibit a counterexample if the answer is "No". (6 points each)
4. If X and Y are topological spaces, $f: X \rightarrow Y$ is a homeomorphism, and B is a connected subset of Y, must $f^{-1}(B)$ be a connected subset of X ?
5. Is the additive inverse function $i: \mathbb{R} \rightarrow \mathbb{R}$ defined by the formula $i(x)=-x$ an $\mathcal{H}-\mathcal{C}$ continuous function?
6. If X and Y are topological spaces, does the collection of subsets of $X \times Y$ of the form $U \times V$, where U is an open subset of X and V is an open subset of Y, form a subbase for the product topology on $X \times Y$?
7. Is it true that a topological space X is disconnected if and only if every subset of X is both open and closed?

Extra credit (6 points):
8. Consider the infinite product space \mathbb{R}^{ω}, which may be viewed as the space of all sequences $\left(x_{1}, x_{2}, \ldots\right)$ of real numbers. Let A be the subset of \mathbb{R}^{ω} consisting of all convergent sequences, that is, sequences such that $\lim _{j \rightarrow \infty} x_{j}$ exists. Determine the interior of A in \mathbb{R}^{ω} and the closure of A in \mathbb{R}^{ω} (where \mathbb{R}^{ω} carries the product topology). Explain your answers.

