Class on February 4 studied how intersection, union, and complement interact with interior, closure, frontier, exterior, and the derived set in a topological space X. Here is a summary.

Interior

Intersection $(A \cap B)^{\circ} = (A^{\circ}) \cap (B^{\circ})$ for all sets A and B.

Union $(A^{\circ}) \cup (B^{\circ})$ always is a subset of $(A \cup B)^{\circ}$ and sometimes is a proper subset.

Complement $(X \setminus A)^\circ$ always is a subset of $X \setminus (A^\circ)$ and sometimes is a proper subset.

Closure

Intersection $Cl(A \cap B)$ always is a subset of $(Cl A) \cap (Cl B)$ and sometimes is a proper subset.

Union $Cl(A \cup B) = (Cl A) \cup (Cl B)$ for all sets A and B.

Complement $X \setminus (Cl A)$ always is a subset of $Cl(X \setminus A)$ and sometimes is a proper subset.

Frontier

Intersection $Fr(A \cap B)$ and $(Fr A) \cap (Fr B)$ have no general relationship to each other.

Union $Fr(A \cup B)$ always is a subset of $(Fr A) \cup (Fr B)$ and sometimes is a proper subset.

Complement $Fr(X \setminus A)$ and $X \setminus (Fr A)$ are complements of each other, since $Fr(X \setminus A) = Fr A$.

Exterior

Intersection (Ext A) \cap (Ext B) always is a subset of Ext($A \cap B$) and sometimes is a proper subset.

Union $Ext(A \cup B)$ always is a subset of $(Ext A) \cup (Ext B)$ and sometimes is a proper subset.

Complement Ext($X \setminus A$) always is a subset of $X \setminus (Ext A)$ and sometimes is a proper subset.

Derived set

Intersection $(A \cap B)'$ always is a subset of $(A') \cap (B')$ and sometimes is a proper subset.

Union $(A \cup B)' = (A') \cup (B')$ for all sets A and B.

Complement $(X \setminus A)'$ and $X \setminus (A')$ have no general relationship to each other.