1. (This problem has 9 parts worth 4 points each.) The interval [0,1] is a subset of the real numbers \mathbb{R} , and so [0,1] may be viewed as a topological space with the relative topology it inherits from \mathbb{R} . When the topology on \mathbb{R} is (a) the usual \mathcal{U} topology, (b) the open half-line \mathcal{C} topology, (c) the half-open interval \mathcal{H} topology, state whether or not [0,1] is (i) a compact topological space, (ii) a connected topological space, (iii) a Hausdorff topological space. In other words, fill in the nine entries in the table with "Yes" or "No" as appropriate:

[0, 1]	compact	connected	Hausdorff
\mathcal{U}			
\mathcal{C}			
\mathcal{H}			

- 2. (This problem has 3 parts worth 7 points each.) Consider the real numbers \mathbb{R} with the usual \mathcal{U} topology. Give an example of
 - (a) a closed, infinite subset of \mathbb{R} with empty interior;
 - (b) a compact, disconnected subset of \mathbb{R} ;
 - (c) a dense subset of \mathbb{R} whose complement is also a dense subset of \mathbb{R} .
- 3. (7 points) Give a precise statement of any *one* of the following four theorems:
 - (i) DeMorgan's Laws
- (ii) Heine-Borel Theorem
- (iii) Urysohn's Lemma
- (iv) Tychonoff's Theorem

The remaining 6 problems count 6 points each. For each question, give a brief explanation if the answer is "Yes", and supply a counterexample if the answer is "No".

- 4. If X is a Hausdorff topological space, Y is a metric space, and $f: X \to Y$ is a continuous function, must f(U) be an open subset of Y whenever U is an open subset of X?
- 5. Is Int(Cl(A)) = A for every subset A of a topological space?
- 6. If X is a compact topological space and $f: X \to \mathbb{R}$ is a continuous function (where \mathbb{R} has the usual \mathcal{U} topology), must the image f(X) be a bounded interval?
- 7. Let X and Y be topological spaces, and suppose the Cartesian product $X \times Y$ has the standard product topology. If A is a subset of X and B is a subset of Y, must it be the case that $Bd(A \times B) = Bd(A) \times Bd(B)$?
- 8. Suppose X and Y are topological spaces, and $f: X \to Y$ is a continuous function. If B is a connected subset of Y, must the inverse image $f^{-1}(B)$ be a connected subset of X?
- 9. If (X, \mathcal{T}) is a compact, connected topological space, and \mathcal{S} is a coarser topology than \mathcal{T} (that is, $\mathcal{S} \subseteq \mathcal{T}$), must the topological space (X, \mathcal{S}) also be compact and connected?

Extra credit (6 points)

10. Prove that a compact Hausdorff space is necessarily a T_4 space.