
Math 436 Introduction to Topology
Examination 1

Spring 2014

1. Suppose X = {a, b}. List all possible topologies on X.

Solution. Every topology must contain at least the empty set and the whole
set. The only other subsets ofX are the singletons {a} and {b}. A topology
can contain neither of these singletons, either one of them, or both of them.
Therefore the possible topologies on X are the following:

{∅, {a, b}} (1)
{∅, {a}, {a, b}} (2)
{∅, {b}, {a, b}} (3)

{∅, {a}, {b}, {a, b}}. (4)

In principle, you should check that all four cases truly are topologies: namely,
closed under unions and under finite intersections. But the sets are so simple
that this conclusion is evident by inspection.
If you really want a formal proof that each collection is closed under unions
and under finite intersections, then you could argue as follows. Case (4) is
the discrete topology, consisting of all subsets of X, so there is nothing to
check. The other three cases all are collections of sets that can be linearly
ordered by inclusion. For any finite chain of sets ordered by inclusion, the
union is the largest of the sets, and the intersection is the smallest of the sets.
Therefore no new sets can arise from forming unions or intersections.

2. Define the following concepts:

(a) interior of a set, and
(b) basis for a topology.

Solution. The interior of a set is the union of all open sets contained in it
(Definition 7 on page 55 in Section 3.5). In other words, the interior of A is
the largest open subset of A.
A basis for a topology � is a collection of �-open sets such that every �-open
set can be obtained by taking the union of some of the sets in the collection
(Definition 3 on page 44 in Section 3.2).

3. Explain why { (x, y) ∈ ℝ2 ∶ xy = 0 } is a closed subset of the metric
space ℝ2 with the usual Pythagorean metric.
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Solution. The indicated set is the union of the two coordinate axes.
One way to see that a set is closed is to show that the complement is open.
If (a, b) is a point in the complement, then neither a nor b is equal to zero,
and the neighborhood of the point (a, b) of radius equal tomin(|a|, |b|) does
not intersect the coordinate axes. Accordingly, the complement of the coor-
dinate axes contains a neighborhood of each of its points, hence is open.
Another way to see that the given set is closed is to recall from calculus that
the function xy is continuous with respect to the standard metric. Singleton
sets are closed in metric spaces, so the given set is closed because it is the
inverse image of the closed set {0} under a continuous function.

4. Considerℚ (the set of rational numbers) as a subset ofℝ (the real numbers).
Determine the frontier (the boundary) of ℚ

(a) when the metric on ℝ is the usual absolute-value metric, and
(b) when the metric on ℝ is the discrete metric.

[Recall that the discrete metric is the metric for which the distance
between every two different points is equal to 1.]

Solution.

(a) With respect to the standard metric, Frℚ = ℝ. Indeed, every interval
in ℝ contains both rational numbers and irrational numbers. In other
words, every neighborhood of an arbitrary point intersects both ℚ and
ℝ ⧵ℚ. Therefore every point is in the frontier of ℚ.
An alternative argument is that the interior of ℚ is empty (since ℚ con-
tains no interval), and the closure of ℚ is ℝ (since ℝ ⧵ ℚ contains no
interval). Then Frℚ = (Clℚ) ⧵ℚ◦ = ℝ ⧵∅ = ℝ.
A third solution is to observe that the rational numbers are dense in
the real numbers, and the irrational numbers are dense too, so Frℚ =
(Clℚ) ∩ Cl(ℝ ⧵ℚ) = ℝ ∩ℝ = ℝ.

(b) With respect to the discrete metric, Frℚ = ∅. Indeed, singleton sets
are open in the discrete metric, so every point x has a neighborhood,
namely the singleton {x}, that intersects eitherℚ or ℝ ⧵ℚ but not both.
Hence no point x satisfies the condition to be in the frontier of ℚ.
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An alternative argument is that the interior of ℚ is equal to ℚ (since
every set is open with respect to the discrete metric), and the closure
of ℚ is equal to ℚ (since every set is closed with respect to the discrete
metric). Then Frℚ = (Clℚ) ⧵ℚ◦ = ℚ ⧵ℚ = ∅.
Actually, a similar argument shows that every set has empty frontier with
respect to the discrete metric.

5. Let d(x, y) denote log(1+ |x−y|) for real numbers x and y. Show that d is a
metric on ℝ. [Reminder: the characteristic property of logarithms says that
log(u) + log(v) = log(uv).]

Solution. Some of the properties of a metric are easy to check. Symmetry
holds because |x− y| = |y−x|. The property that d(x, x) = 0 for every x is
valid because log(1) = 0. The property that d(x, y) > 0 when x ≠ y follows
because the logarithm function is increasing, so log(1+|x−y|) > log(1) = 0.
What remains to verify is the triangle inequality for d: namely,

log(1 + |x − y|)
?
≤ log(1 + |x − z|) + log(1 + |z − y|). (5)

A popular way to check this inequality is to manipulate it into some other
inequality that is obviously true. That method is acceptable but prone to
error (because making a step that is not reversible will wreck the proof).
Perhaps safer is to argue by contradiction. Suppose, if possible, that there
are values of x, y, and z for which inequality (5) fails: namely,

log(1 + |x − y|) > log(1 + |x − z|) + log(1 + |z − y|). (6)

The exponential function is strictly increasing, so exponentiating preserves
the inequality:

1+ |x−y| > (1+ |x−z|)(1+ |z−y|) = 1+ |x−z|+ |z−y|+ |x−z| |z−y|.

Subtract 1 from both sides to see that

|x − y| > |x − z| + |z − y| + |x − z| |z − y|.

Since |x−z| |z−y| ≥ 0, the points x, y, and z have the property that |x−y| >
|x − z| + |z − y|, which violates the triangle inequality for the absolute-
value metric. This contradiction shows that inequality (6) is untenable, so
the required inequality (5) holds after all.
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Remark. The same argument shows that if D is an arbitrary metric, then
log(1 +D) is a metric too.

6. True or false: If ℝ is equipped with the discrete metric, then every function
from ℝ to ℝ is continuous. Explain your answer.

Solution. True. A function is continuous if and only if the inverse image
of every open set is open. Every set is open in the discrete metric, so, in
particular, every inverse-image set is open.
An alternative explanation is that continuous functions are the functions that
map convergent sequences to convergent sequences. A sequence is con-
vergent with respect to the discrete metric precisely when the sequence is
eventually constant. An arbitrary function evidently maps every eventually
constant sequence to an eventually constant sequence.

Remark. Example 7 on page 70 in Section 4.3 is a generalization of this
problem to the setting of topological spaces.

7. Suppose � is a topology on ℝ2 with the property that every line is a �-open
set. Prove that � must be the discrete topology (the topology in which every
subset of ℝ2 is open).

Solution. The intersection of two open sets is open, so the intersection of
every pair of lines is �-open. Every point can be obtained as the intersection
of two lines, so every point (that is, every singleton set) is �-open. Every set
is a union of points, so every set is a union of �-open sets. Hence every set
is �-open. Thus � is the discrete topology.

8. Suppose � is a topology on a set X. Let � be the collection of all �-closed
subsets ofX. Is this collection � a topology onX? Explain why or why not.

Solution. Sometimes � is a topology, but not always. For instance, if � is
the discrete topology consisting of all subsets of X, then � is equal to �, so
� is a topology. On the other hand, if X is a metric space whose topology �
is not the discrete topology (for example, the set of real numbers with the
standard absolute-value metric), then � is not a topology. Indeed, singleton
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sets are closed sets in metric spaces, so � contains all singletons. If � were a
topology, then the union of sets in � would be in �. But every set is a union
of singleton sets, so every set would be in �. Thus � would be the discrete
topology, so � too would be the discrete topology, contrary to hypothesis.
The underlying subtlety here is that arbitrary unions of open sets are open
and finite intersections of open sets are open. (Recall Exercise 1 on page 43
in Section 3.1.) Closed sets are complements of open sets, so DeMorgan’s
laws for set complements imply that arbitrary intersections of sets in � still
belong to � and finite unions of sets in � still belong to �. Since arbitrary
unions of sets in � do not necessarily belong to �, the collection � need
not be a topology. But if there are only finitely many �-open sets (which is
certainly the case if X is a finite set), then � will be a topology.

Extra Credit. Valentine’s Day Bonus Problem:

Suppose X is a topological space. Define ♡A to be (A′)◦ (that is, the interior of
the derived set of A) when A ⊂ X. Prove that ♡(♡A) = ♡A.

Solution. The strategy is to show both that ♡A is a subset of ♡(♡A) and that
♡(♡A) is a subset of ♡A. Notice that if a set B is open, then B is a subset of C
if and only if B is a subset of the interior of C . And the sets ♡A and ♡(♡A) are
open, since they are interiors of other sets. Therefore all that needs to be shown is
that ♡A ⊂ (♡A)′ and ♡(♡A) ⊂ A′.

For the first step, let x be an arbitrary point of ♡A. The goal is to show that for
every neighborhood U of x, the intersection U ∩♡A contains some point different
from x. Seeking a contradiction, suppose that U ∩ ♡A = {x}. Then the singleton
set {x} is open, being the intersection of the open setsU and♡A. But now x cannot
belong toA′, since {x} is a neighborhood of x that does not intersectA⧵{x}. This
conclusion contradicts that x lies in♡A, which is a subset ofA′. The contradiction
means that every neighborhood U of x does intersect (♡A) ⧵ {x}, so x ∈ (♡A)′.
Therefore ♡A ⊂ (♡A)′, since x is an arbitrary point of ♡A.

For the second step, let x be an arbitrary point of ♡(♡A). The goal is to show
that for every neighborhood U of x, the intersection U ∩ A contains some point
different from x. This conclusion is automatic if x ∈ ♡A, since ♡A is a subset
of A′, so suppose that x ∉ ♡A. By hypothesis, x lies in the derived set of ♡A, so
the neighborhood U intersects ♡A. Let y be a point in U ∩ ♡A. The set U ∩ ♡A
is open, hence is a neighborhood of y, and y ∈ A′. Therefore the neighborhood
U ∩♡A intersectsA, and necessarily at some point different from x, since x ∉ ♡A.
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Accordingly, every neighborhood U of x intersects A ⧵ {x}, so x ∈ A′. Therefore
♡(♡A) ⊂ A′, since x is an arbitrary point of ♡(♡A).

In conclusion, the preceding two steps show that ♡A ⊂ ♡(♡A) ⊂ ♡A. There-
fore ♡A = ♡(♡A).

The heart has its reasons that Reason knows not.1
—Blaise Pascal (1623–1662)

1Le cœur a ses raisons, que la raison ne connaît point.
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