
Math 436 Introduction to Topology
Examination 2

Spring 2014

1. Equipℝ, the set of real numbers, with the standard topology (corresponding
to the absolute-value metric). Let the subspace Y be the half-open interval
[0, 2), that is, { x ∈ ℝ ∶ 0 ≤ x < 2 }. Let A be the interval [0, 1). With
respect to the subspace topology on Y , is the set A open, closed, both, or
neither? Explain.

Solution. Since the interval (−1, 1) is open in ℝ, and A = (−1, 1) ∩ Y , the
set A is open with respect to the subspace topology.
The closure of A in ℝ equals [0, 1], and the closure of A with respect to the
subspace topology is equal to the intersection of Y with the closure ofA inℝ
(see Proposition 4 on page 68 in Section 4.2). Thus the set A is not closed
with respect to the subspace topology, for the closure is the strictly bigger
set [0, 1].

2. Equip ℕ, the set of natural numbers, with the cofinite topology (that is, the
proper closed sets are the finite sets). With respect to the corresponding
product topology on the product space ℕ × ℕ, is the “diagonal” subset

{ (n, n) ∈ ℕ × ℕ ∶ n ∈ ℕ }

open, closed, both, or neither? Explain.

Solution. The diagonal is neither open nor closed with respect to the product
topology. More is true: the diagonal has no interior points, hence in a strong
way fails to be an open set; and the closure of the diagonal is the whole space,
so the diagonal in a strong way fails to be a closed set.
Indeed, a basic open set in the product topology has the formU×V , whereU
and V are open sets in the cofinite topology. If both U and V are nonempty
sets, and k denotes the maximum of the finitely many natural numbers that
are missing from either U or V , then the set U × V contains all pairs (m, n)
for which both numbers m and n exceed k. In particular, since m and n can
be different from each other (say m = k + 1 and n = k + 2), the set U × V
contains some points that are not on the diagonal. Thus the diagonal contains
no basic open set: the diagonal has empty interior.
Taking complements shows that for every proper closed set in the product
space, there exists a natural number k such that the given closed set con-
tains no pair (m, n) for which both numbers m and n exceed k. In particu-
lar, a proper closed set contains only finitely many points of the diagonal.
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Therefore the only closed set containing the diagonal is the whole space: the
diagonal is a dense subset of the product space!

Remark This product topology is not the cofinite topology. Finite sets
are indeed closed, but there are some infinite closed sets too. For example,
the infinite set {1} × ℕ is a closed set with respect to the product topology.
Thus the product topology is strictly finer than the cofinite topology on the
product space.
On the other hand, if the diagonal is considered as a subspace of the product
space, then the subspace topology on the diagonal is the cofinite topology.
Indeed, Exercise 7 on page 89 in Section 4.6 says that the diagonal is homeo-
morphic to ℕ.

3. LetX be { x ∈ ℝ ∶ 0 < x } (the set of positive real numbers) equipped with
the discrete topology, and let f ∶ X → X be defined by setting f (x) equal
to x2 for each value of x. Is this function f a homeomorphism? Explain
why or why not.

Solution. Yes, the function f is a homeomorphism (a continuous bijection
with a continuous inverse). On the positive real numbers, the squaring func-
tion has an inverse (the square-root function), so f is a bijection (one-to-one
and onto). Both f and its inverse are continuous because every function is
continuous with respect to the discrete topology.

4. Prove that if a topological space satisfies the separation property T4 and also
satisfies the separation property T1, then the space necessarily satisfies the
separation property T2.

Solution. In a T1 space, points (that is, singleton sets) are closed. In a
T4 space, two arbitrary disjoint closed sets can be included in disjoint open
sets. Consequently, if a space has both properties T1 and T4, two arbitrary
distinct points can be included in disjoint open sets. The latter property is
precisely property T2.

Second solution, using continuous functions Let x and y be two dis-
tinct points of a topological space X that satisfies properties T1 and T4. By
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property T1, the singleton sets {x} and {y} are disjoint closed sets. By prop-
erty T4 (in the guise of Urysohn’s lemma), there exists a continuous function
f ∶ X → ℝ such that f (x) = 0 and f (y) = 1. Then f−1((−1∕4, 1∕4)) is an
open subset of X containing x, and f−1((3∕4, 5∕4)) is an open subset of X
containing y, and these two open sets are disjoint. Since x and y are arbitrary
distinct points of X, property T2 holds for the space X.

5. State either Urysohn’s Lemma or Tietze’s Extension Theorem.

Solution. See Propositions 10 and 11 in Section 5.5 (pages 107 and 110).

6. Does there exist a topology � on the set ℝ of real numbers that makes (ℝ, �)
into a compact topological space? Explain why or why not.

Solution. For an arbitrary topological spaceX, the trivial topology {X,∅}
makes the space compact, because every open cover has a subcover con-
sisting of a single set (namely, the whole set X). In particular, the trivial
topology makes ℝ into a compact space.
Another example of a topology that makes an arbitrary space compact is the
cofinite topology.

7. With respect to the standard topology on the real numbers, there does not
exist a function f ∶ [0, 1] → (0, 1) that is simultaneously continuous and
surjective (onto). Why not?

Solution. The image of a compact set under a continuous function is nec-
essarily compact (Proposition 12 on page 157 in Section 7.4). The interval
[0, 1] is compact, but the interval (0, 1) is not compact (with respect to the
standard topology on the real numbers). Therefore the interval (0, 1) can-
not be the image of the interval [0, 1] under a continuous function. If f is
continuous, then the image of the compact interval [0, 1] under f must be a
proper subset of the noncompact interval (0, 1).

8. Give an example of a topological space that is first countable but not second
countable. Explain why your example works.

Solution. One example is the set of real numbers with the discrete topology
(Example 6 on page 145 in Section 7.2).

April 3, 2014 Page 3 of 4 Dr. Boas



Math 436 Introduction to Topology
Examination 2

Spring 2014

If x is an arbitrary real number, then the singleton set {x} is openwith respect
to the discrete topology, and every neighborhood of x includes the set {x}.
Therefore {{x}} is a neighborhood system of x that is countable (indeed,
finite). Since x is arbitrary, the space is first countable.
On the other hand, suppose  is a basis for the topology. If x is an arbitrary
real number, then the open set {x} is a union of sets in the basis . But {x}
has no proper nonempty subset, so {x} must be one of the sets in . Since
x is arbitrary, and there are uncountably many real numbers, the basis  is
uncountable. Thus the space is not second countable.
A more subtle example is the set of real numbers with the half-open interval
topology (Example 7 on page 150 in Section 7.2). This space is first count-
able because { [x, x + 1∕n) ∶ n ∈ ℕ } is a countable neighborhood basis
of an arbitrary point x. On the other hand, if  is a basis for the topology,
and x is an arbitrary real number, then the open set [x, x + 1) is a union of
basis elements, and one of these basis elements must contain x but no real
number less than x. Thus there is an injective mapping from ℝ into , so
 is uncountable. Since every basis is uncountable, the topological space is
not second countable.

Bonus Problem for Extra Credit:

Prove the following version of Cantor’s nested-set theorem: If X is a Hausdorff
topological space, and {Kj}∞j=1 is a decreasing sequence of nonempty compact
subsets of X (that is, K1 ⊃ K2 ⊃⋯), then the intersection

⋂∞
j=1Kj is not empty.

Solution. In a Hausdorff space, compact sets are closed (this statement is Propo-
sition 11 on page 156 in Section 7.4), so each set Kj is closed in X. Since K1 is a
closed set, each setKj is closed inK1 with respect to the subspace topology onK1
(by Proposition 4 on page 68 in Section 4.2, for example).

View K1 as a topological space with the subspace topology inherited from X.
Then K1 is a compact space, since K1 is a compact subset of X. By Proposition 8
on page 153 in Section 7.3, the compact space K1 has the finite intersection prop-
erty: if a family of closed subsets of K1 has the property that every finite subfam-
ily has nonempty intersection, then the whole family has nonempty intersection.
Since the setsKj are nested and nonempty, the intersection of a finite collection of
these sets is nonempty (being equal to the set in the finite collection with the largest
subscript). The finite intersection property implies that the intersection

⋂∞
j=1Kj is

not empty.
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