- 1. Define
 - (a) the meaning of a *component* of a topological space (X, τ) ,
 - (b) the meaning of two metrics on a set X being *equivalent* metrics.
- 2. Give an example of a disconnected metric space (X_1, d_1) and a connected metric space (X_2, d_2) and a continuous mapping $f : X_1 \to X_2$.
- 3. Suppose X is the two-point space {a, b} equipped with the topology consisting of the three sets Ø, X, and {a}. Is this topological space path-connected? Explain why or why not.
- 4. Suppose $f(x) = \cos(x)$ when $x \in \mathbb{R}$. Show that if f is viewed as a mapping from the topological space (\mathbb{R} , finite-closed topology) into itself, then f is not continuous.
- 5. Suppose X is the set of letters of the Greek alphabet. Prove that if d is an arbitrary metric on X, then the topology induced by d must be the discrete topology.

Optional Extra Credit Problem

Given a collection of functions from a set X_1 to a set X_2 , and given a topology τ_2 on X_2 , there is a natural way to create a topology τ_1 on X_1 : namely, the coarsest topology for which all the specified functions are continuous. (A topology τ is coarser than a topology σ if $\tau \subseteq \sigma$, that is, every τ -open set is also σ -open.)

Specifically, suppose that both X_1 and X_2 are \mathbb{R} , and τ_2 is the Euclidean topology. Consider the collection of step functions { $f_c : c \in \mathbb{R}$ } of the following form:

$$f_c(x) = \begin{cases} 0, & \text{if } x < c, \\ 1, & \text{if } x \ge c. \end{cases}$$

Determine the coarsest topology τ_1 on X_1 that makes all of these step functions continuous as functions from (X_1, τ_1) to (X_2, τ_2) .