- 1. Suppose $X = \{1, 2, 3\}$, and $\mathcal{B} = \{\{1, 2\}, \{2, 3\}\}$. Is the set \mathcal{B}
 - (a) a topology on X?
 - (b) a basis for a topology on X?
 - (c) a subbasis for a topology on X?

Explain why or why not.

- 2. Suppose X is the set $\{x, y, z\}$ equipped with the topology $\{\emptyset, \{x\}, \{x, y\}, X\}$. Determine
 - (a) the interior of the singleton subset $\{y\}$, and
 - (b) the closure of the singleton subset $\{y\}$.
- 3. Suppose $d(x, y) = \left| \log\left(\frac{x}{y}\right) \right|$. Is this function *d* a metric on the set of positive rational numbers? Explain why or why not. [Recall that $\log(x/y) = \log(x) \log(y)$.]
- 4. The topological space in this problem is \mathbb{R} , the set of real numbers, equipped with the standard Euclidean topology.
 - (a) Give an example of a subset of \mathbb{R} that is compact but not connected.
 - (b) Give an example of a subset of \mathbb{R} that is connected but not compact.
- 5. Suppose $f : (\mathbb{R}, \tau) \to (\mathbb{R}, \tau)$ is the function defined as follows: $f(x) = \begin{cases} 1/x, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$
 - (a) Give an example of a topology τ with respect to which the function f is continuous.
 - (b) Give an example of a topology τ with respect to which f is not continuous.
- 6. True/false: For each of the following statements, say whether the sentence is true or false (exclusive "or"). If the statement is false, give a counterexample; if the statement is true, give a brief explanation why.
 - (a) Every path-connected topological space is connected.
 - (b) Every metric space is a Hausdorff space (that is, T_2 space) with respect to the topology induced by the metric.
 - (c) A subset *E* of a topological space *X* is dense in *X* if and only if the following property holds: $E \cap U \neq \emptyset$ for every nonempty open set *U*.

Optional Extra Credit Problem

Determine the homeomorphism classes of intervals in \mathbb{R} with respect to the Sorgenfrey topology. In other words, if intervals are equipped with the subspace topology induced by the Sorgenfrey topology on \mathbb{R} , then which intervals are homeomorphic to each other?