Two English words derived from the Latin word basis

	meaning	plural	phonetic plural
base	a supporting part	bases	bay-sez
basis	a fundamental part	bases	bay-seez

If (X, τ) is a topological space, then a collection \mathcal{B} of open sets is a *basis* for τ when *every* open set is a union of members of \mathcal{B} .

Example

One basis for the Euclidean topology on \mathbb{R} is the collection of intervals { $(a, b) : a \in \mathbb{R}$ and $b \in \mathbb{R}$ and a < b }.

Another basis for the Euclidean topology on \mathbb{R} is the collection of intervals $\{(a, b) : a \in \mathbb{Q} \text{ and } b \in \mathbb{Q} \text{ and } a < b\}$.

Product topology (see Exercises 2.2: #6)

Examples

- If *τ* is the Euclidean topology on ℝ, then the product topology on ℝ × ℝ is the Euclidean topology on ℝ² (open rectangles form a basis).
- If X is equipped with the discrete topology, then what is the product topology on X × X? Answer: the discrete topology.
- If N is equipped with the initial segment topology, then what is the product topology on N × N? Answer: staircases.

Assignment due next class

- 1. If \mathbb{N} is equipped with the finite-closed topology, is the corresponding product topology on $\mathbb{N} \times \mathbb{N}$ equal to the finite-closed topology on $\mathbb{N} \times \mathbb{N}$? Why or why not?
- Prove that if (X, τ₁) is a T₁ space, and (Y, τ₂) is a T₁ space, and τ₃ is the product topology on the Cartesian product X × Y, then (X × Y, τ₃) is a T₁ space.
- 3. Read section 2.3 in the textbook.