Question

If \mathcal{B} is some collection of subsets of X, and \mathcal{B} contains at least the sets \emptyset and X, is \mathcal{B} necessarily a basis for some topology on X? No.

Example

If $X = \mathbb{R}$, and \mathcal{B} consists of all unbounded intervals (a, ∞) and $(-\infty, b)$ (for all real numbers *a* and *b*), then \mathcal{B} is not a basis for any topology. Why not? The intersection $(-\infty, 1) \cap (0, \infty)$ is the bounded interval (0, 1), which is not a union of elements of \mathcal{B} .

Assignment due next class

- 1. Write solutions to number 5 in Exercises 1.2 and number 3 in Exercises 2.3.
- 2. Read section 3.1 in the textbook.