New concepts in section 3.2

- neighborhood [Definition 3.2.1]
- interior of a set [Exercise 3.2.5]
- separable space [Exercise 3.2.4]
- second axiom of countability [Exercise 2.2.4]
- the Sorgenfrey line [Exercise 3.2.11)

Neighborhood

A set S is a neighborhood of a point x if S contains an open set that contains x.

Example
In \mathbb{R} with the Euclidean topology, the interval $[0,2]$ is a neighborhood of the point 1 but is not a neighborhood of the point 0 .

A set is open if and only if the set contains a neighborhood of each of its points.

Interior

The interior of a set S is the union of all open subsets of S.

Example

In \mathbb{R} with the Euclidean topology, the interior of the interval $[0,2)$
is the interval $(0,2)$.
The interior of \mathbb{Q} is \varnothing.

Separable space

A topological space is separable if it contains a countable dense subset.

Example

The space \mathbb{R} with the Euclidean topology is separable because \mathbb{Q} is a countable dense subset.

The space \mathbb{R} with the discrete topology is not separable. The only dense subset is \mathbb{R} itself, which is uncountable.

Second axiom of countability

A topological space is second countable when there exists a countable basis for the topology.

Example

- \mathbb{R} with the Euclidean topology is second countable: The open intervals having rational endpoints form a basis.
- \mathbb{R} with the discrete topology is not second countable: Every basis must contain every singleton set.

Sorgenfrey line [named for Robert Sorgenfrey (1915-1995)]

The "half-open" intervals of the form $[a, b)$ form a basis for a certain topology on \mathbb{R}. This topological space is known as the Sorgenfrey line.

The rational numbers are a dense subset of this topological space, so the Sorgenfrey line is separable.

The Sorgenfrey line is not second countable.

Assignment due next class

1. Suppose $\mathcal{B}=\{[a, b): a \in \mathbb{R}, b \in \mathbb{Q}$, and $a<b\}$, $\mathcal{B}_{1}=\{[a, b): a \in \mathbb{R}, b \in \mathbb{R}$, and $a<b\}$, and $\mathcal{B}_{2}=\{[a, b): a \in \mathbb{Q}, b \in \mathbb{Q}$, and $a<b\}$. Show that \mathcal{B} and \mathcal{B}_{1} are two different bases for the same topology on \mathbb{R}. Is \mathcal{B}_{2} another basis for the same topology?
2. Write a solution to number 2 in Exercises 3.1.
3. Read section 3.3 in the textbook (about connectedness).
